把只包含因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含因子7。
习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。
/*
说下思路,如果p是丑数,那么p=2^x * 3^y * 5^z
那么只要赋予x,y,z不同的值就能得到不同的丑数。
如果要顺序找出丑数,要知道下面几个特(fei)点(hua)。
对于任何丑数p:
(一)那么2*p,3*p,5*p都是丑数,并且2*p<3*p<5*p
(二)如果p<q, 那么2*p<2*q,3*p<3*q,5*p<5*q
现在说说算法思想:
由于1是最小的丑数,那么从1开始,把2*1,3*1,5*1,进行比较,得出最小的就是1
的下一个丑数,也就是2*1,
这个时候,多了一个丑数‘2’,也就又多了3个可以比较的丑数,2*2,3*2,5*2,
这个时候就把之前‘1’生成的丑数和‘2’生成的丑数加进来也就是
(3*1,5*1,2*2,3*2,5*2)进行比较,找出最小的。。。。如此循环下去就会发现,
每次选进来一个丑数,该丑数又会生成3个新的丑数进行比较。
上面的暴力方法也应该能解决,但是如果在面试官用这种方法,估计面试官只会摇头吧
。下面说一个O(n)的算法。
在上面的特(fei)点(hua)中,既然有p<q, 那么2*p<2*q,那么
“我”在前面比你小的数都没被选上,你后面生成新的丑数一定比“我”大吧,那么你乘2
生成的丑数一定比我乘2的大吧,那么在我选上之后你才有机会选上。
其实每次我们只用比较3个数:用于乘2的最小的数、用于乘3的最小的数,用于乘5的最小的
数。也就是比较(2*x , 3*y, 5*z) ,x>=y>=z的,
重点说说下面代码中p的作用:int p[] = new int[] { 0, 0, 0 }; p[0]表示最小用于
乘2比较数在数组a中的【位置】。 */
public
class
Solution {
final
int
d[] = {
2
,
3
,
5
};
public
int
GetUglyNumber_Solution(
int
index) {
if
(index ==
0
)
return
0
;
int
a[] =
new
int
[index];
a[
0
] =
1
;
int
p[] =
new
int
[] {
0
,
0
,
0
};
int
num[] =
new
int
[] {
2
,
3
,
5
};
int
cur =
1
;
while
(cur < index) {
int
m = finMin(num[
0
], num[
1
], num[
2
]);
if
(a[cur -
1
] < num[m])
a[cur++] = num[m];
p[m] +=
1
;
num[m] = a[p[m]] * d[m];
}
return
a[index -
1
];
}
private
int
finMin(
int
num2,
int
num3,
int
num5) {
int
min = Math.min(num2, Math.min(num3, num5));
return
min == num2 ?
0
: min == num3 ?
1
:
2
;
}
}