虎扑网站服务器垃圾,虎扑拿下域名hupu.com 游击队摇身一变正规军

国内知名体育社区虎扑网宣布启用新域名hupu.com,替代原有的hoopchina.com,旨在将旗下四个分站重新聚合。此举对虎扑来说是一个重要里程碑,解决了因域名不统一导致的访客流失问题。hupu.com域名据说从58同城姚劲波处购得,具体交易金额未公开。尽管相关主流后缀已被注册,虎扑仍成功获取了hupu.com,对于社区的长远发展及商业化有着积极影响。
摘要由CSDN通过智能技术生成

域名快讯:今日,国内知名的体育社区虎扑网正式启用全新域名hupu.com,原域名hoopchina.com保留使用并永久有效。据虎扑网发布公告称,此次启用新域名,让虎扑的四个分站“虎扑篮球、GoalHi足球、HelloF1塞车、亮乐体育会”重新聚合到一起,这对于虎扑而言是一个重要的里程碑。

b9670811c4521ddf7f9944909baeb317.png

据爱名网查询,hupu.com在未启用之前Alexa网站排名都保持在10万名以内,可见虎扑网名声在外但域名不给力,导致每天有近万名搞不清楚正确域名的网民乱闯。依照目前虎扑网的分站布局和所使用的域名,即使投入大量的资金进行市场推广,所达到的推广效果也极其不佳,中间会造成不少的访客流失。

有传媒爆料,hupu.com该域名是虎扑网从58同城姚劲波手里购得,具体的成交额不详。通过Whois查询得知,hupu.com注册于2000年,截至发稿前注册人信息仍显示为yaojinbo,还未真正过户到虎扑的名下。而其相关的主流后缀均被注册,其中hupu.net/.cn/.com.cn被国内某软件商收括囊中,并启用建站。

这一次,虎扑网能从姚劲波拿下hupu.com可谓是命悬一线,若再错失掉hupu.com这个域名,今后咸鱼想再翻身得花费更大的代价。倘若这次拿不下hupu.com这个域名,对于虎扑这样的社区就等于永远卡在了一个瓶颈上,十分不利于平台的商业化发展。至少,在有些VC眼里,没有正规的域名,就是名不正言不顺。

有网民对此表示了自己的看法:“今天和往常一样上虎扑,发现陪伴了我们几年的hoopchina.com将被换成nba.hupu.com。虽然只是网址的变动,可是内心不免感慨一番,这么多年了,虎扑网终于成为正规军了,希望这次的改变能让社区得到更好的发展。”

本文由A5资讯内容合作伙伴爱名网(22.cn)提供,转载请注明出处。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值