机器学习模型评价指标 – 混淆矩阵
在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型好坏的形象化展示工具。其中,矩阵的每一列表示的是模型预测的样本情况;矩阵的每一行表示的样本的真实情况。
1. 混淆矩阵的举例
例如用一个分类模型来判别一个水果是苹果还是梨,混淆矩阵将会模型的预测结果总结成如下表所示的表格。
模型预测结果
苹果
真实结果
苹果
10
梨
3
通过上述表格可以看出,样本的数量一共是10+2+3+15=3010+2+3+15=30个样本。其中苹果有10+2=1210+2=12个,梨有3+15=183+15=18个。该模型预测的苹果的数量是10+3=1310+3=13个,有1010个是预测正确的,33个是预测错误的。该模型预测的梨的数量是2+15=172+15=17个,其中有1515个是预测正确的,22个是预测错误的。
2. 混淆矩阵
对于一个二分类的模型,其模型的混淆矩阵是一个2×22×2的矩阵。如下图所示:
Predicted condition
positive
True condition
positive
True Positive
negative
False Positive
混淆矩阵比模型的精度的评价指标更能够详细地反映出模型的”好坏”。模型的精度指标,在正负样本数量不均衡的情况下,会出现容

混淆矩阵是评估分类模型性能的重要工具,尤其在正负样本不平衡时。它包含True Positive, False Negative, False Positive和True Negative,进一步衍生出如Accuracy、Precision、Recall等评价指标,帮助我们全面理解模型的优劣。高精度并不意味着模型好,还需结合其他指标综合判断。"
132834431,15126619,ROS栅格地图与占据栅格算法实战-自动驾驶,"['自动驾驶', 'ROS', '机器学习', '数据处理', '传感器']
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



