下面题目
例4-1:求t
e
t f 2)(-=的傅立叶变换。
例4-2:求2
11
)(ω
ω+=j F 的傅立叶逆变换)(t f 。
例4-3:设)(2
1)(2t u e t f t
-=
,
、试画出)(t f 及其幅频图。 例4-4:已知门信号
????
?><==1
11
)()(2t t t G t f ,求其傅立叶变换)(ωj F 。
例4-5:设)1()1()()(2
--+==t u t u t G t f ,用MATLAB 求)
12()12()()(1
--+==t u t u t G t y 的频谱)(ωj Y ,并与)(t f 的频谱)(ωj F 进行比较。 例4-6:设)(2
1)(2t u e t f t
-=
,)3.0(2
1)()
3.0(2-=
--t u e
t y t 试用MATLAB 绘出)(t f ,)(t y 及其
频谱(幅度谱和相位谱),并对二者频谱进行比较。 例4-7:设)1()1()(--+=t u t u t f ,试用MATLAB 绘出t
j e t f t f 201
)()(-=及t
j e t f t f 202
)()(=的频谱)(1
ωj F 和)(2
ωj F ,并与)(t f 的频谱)(ωj F 进行比较。
例4-8:设)1()1()(--+=t u t u t f ,)(*)()(t f t f t y =,试用MATLAB 绘出)(t f ,)(t y ,
)(ωj F ,)()(ωωj F j F ?及)(ωj Y ,验证式(4-10)
。 例4-9:设)()(t Sa t f =,已知信号)(t f 的傅立叶变换为)()(2
ωπωG j F =,利用MATLAB
求)()(2
1
t G t f π=的傅立叶变换)(1
ωj F ,验证对称性。
例4-1:求t
e t
f 2)(-=的傅立叶变换。 解:利用如下MATLAB 命令实现: yms t
fourier(exp(-2*abs(t)))
ans =
4/(4+w^2)
若傅立叶变换的结果变量希望是v ,则可执行如下命令: