Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作。拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。拉普拉斯算子也可以推广为定义在黎曼流形上的椭圆型算子,称为拉普拉斯-贝尔特拉米算子。(百度百科)
拉普拉斯算子是最简单的各项同性二阶微分算子,具有旋转不变性。根据函数微分的特性,该像素点值的二阶微分点为0的点为边缘点,对于二维图像函数f(x,y),图像的Laplace算子为:
laplace是对x方向和y方向分别求二阶导数,其在x方向的二阶导数如下:
其在y方向上的二阶导数如下:
本文介绍了拉普拉斯算子作为边缘检测的一种方法,它是二阶微分算子,具有旋转不变性。拉普拉斯算子通过寻找图像中二阶导数为0的点来定位边缘。在二维图像中,Laplace算子的表达式和filter mask被展示,并解释了其在图像锐化和边缘检测中的作用。OpenCV库提供了实现拉普拉斯函数的接口,文章还给出了相关参数的说明和示例代码。
最低0.47元/天 解锁文章
186

被折叠的 条评论
为什么被折叠?



