I have a single .csv file containing multiple tables.
Using Pandas, what would be the best strategy to get two DataFrame inventory and HPBladeSystemRack from this one file ?
The input .csv looks like this:
Inventory
System Name IP Address System Status
dg-enc05 Normal
dg-enc05_vc_domain Unknown
dg-enc05-oa1 172.20.0.213 Normal
HP BladeSystem Rack
System Name Rack Name Enclosure Name
dg-enc05 BU40
dg-enc05-oa1 BU40 dg-enc05
dg-enc05-oa2 BU40 dg-enc05
The best I've come up with so far is to convert this .csv file into Excel workbook (xlxs), split the tables into sheets and use:
inventory = read_excel('path_to_file.csv', 'sheet1', skiprow=1)
HPBladeSystemRack = read_excel('path_to_file.csv', 'sheet2', skiprow=2)
Howe

本文介绍了如何使用Pandas从包含多个表格的CSV文件中读取数据。通过创建一个字典,其中键为表名,值为子表,可以有效地处理这种情况。这种方法不需要额外的模块,并且适用于实时分析日志数据。示例代码展示了如何将CSV文件中的表格分离并设置合适的列名。
最低0.47元/天 解锁文章

1039

被折叠的 条评论
为什么被折叠?



