导出期刊对应格式的参考_从一篇文献看Web of Science的导出参考文献使用及格式...

这篇论文对比了网格搜索和随机搜索在超参数优化中的效果,结果显示随机搜索在神经网络和深度信念网络配置中能以更少的计算时间找到同样或更好的模型。论文还指出,大多数数据集中只有少数超参数真正重要,这使得网格搜索对于新数据集的算法配置不是一个好选择。
摘要由CSDN通过智能技术生成

《Random Search for Hyper-Parameter Optimization》

wos全部缩略词网址:Web of Science Core Collection Help​images.webofknowledge.comWeb of Science Core Collection HelpWeb of Science Core Collection Help​images.webofknowledge.com

FN Clarivate Analytics Web of Science

VR 1.0

PT J

AU Bergstra, J AU:作者

Bengio, Y

AF Bergstra, James AF:作者全名

Bengio, Yoshua

TI Random Search for Hyper-Parameter Optimization TI:文章标题

SO JOURNAL OF MACHINE LEARNING RESEARCH SO:期刊名

SN 1532-4435 SN:ISSN

PD FEB PD: 出版日期(Publication Date)

PY 2012 出版年(Year Published)

VL 13 VL:卷号(Volume)

BP 281 BP: 起始页码(Beginning Page)

EP 305 终止页码(Ending Page)

UT WOS:000303046000003

ER

EF

还有一些,在这篇文章的页面没有提到:

IS:期号(Issue) OI:ORCID Identifier (Open

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值