人脸识别算法的实现通常包括以下步骤:
数据预处理: 这一步通常包括将输入的图像进行标准化、裁剪和旋转等处理,以便为后续步骤做好准备。
特征提取: 这一步通常包括对图像进行缩放、旋转、对比度增强等处理,以提取关键的特征信息。常用的方法有 Gabor 滤波、纹理分析、SIFT 等。
特征表示: 这一步通常包括将提取出的特征信息进行编码、压缩,以便于后续的比较和识别。常用的方法有 PCA、LDA 等。
特征比较: 这一步通常包括将待识别的人脸与库中的人脸进行比较,找出最相似的匹配。常用的方法有欧几里得距离、余弦相似度等。
决策: 这一步通常包括根据前面步骤得出的结果,做出最终的识别决策。

被折叠的 条评论
为什么被折叠?



