蓝桥杯编程竞赛资料包:高僧斗法题目解析与代码实现

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:这是一个针对蓝桥杯全国性编程竞赛的资源压缩包,包含历年“高僧斗法”题目的参考代码和解决方案。这些资源旨在提升参赛者在软件和信息技术领域的专业技能,特别是算法设计和编程能力。压缩包中的参考代码以C++、Java、Python等主流编程语言编写,涵盖了动态规划、贪心算法、图论等算法思想,并通过示例输入输出帮助理解和实现算法。通过分析这些代码,参赛者可以学习如何将问题抽象为数据结构和算法,并在编程实践中提升效率和代码质量。

1. 蓝桥杯编程竞赛概述

蓝桥杯是中国计算机学会(CCF)主办的一项全国性信息技术类竞赛,面向高等院校计算机及相关专业的在校学生。该竞赛不仅是为了选拔优秀的信息技术人才,更是为了推动计算机学科的教学改革和创新,促进高校学子的实践能力和创新意识。

1.1 竞赛的背景与意义

蓝桥杯竞赛的举办背景是中国信息技术产业的快速发展,需要大量的计算机专业人才。通过竞赛,能够激发学生对编程的热情,提高解决实际问题的能力,同时也为用人单位提供了一个发现和选拔优秀人才的平台。

1.2 竞赛的组织形式与参与对象

竞赛以个人为单位,分为多个组别,如本科组、高职高专组等。每届竞赛会设置不同的题目类型,包括但不限于算法与程序设计、软件开发、人工智能、网络安全等。参与对象主要是各大高校的学生,他们需要在规定的时间内完成题目,提交解决方案。

通过了解蓝桥杯编程竞赛的组织形式和参与对象,我们可以为准备参赛的学生提供一个宏观的视角,理解这个平台是如何成为连接教育与产业的桥梁。接下来的章节将会深入分析题目、探讨算法设计、编程能力提升、编程语言应用以及数据结构与算法的实践应用,帮助参赛者在竞赛中脱颖而出。

2. “高僧斗法”题目分析与参考代码

2.1 “高僧斗法”题目背景与要求

2.1.1 题目来源与竞赛意义

“高僧斗法”是蓝桥杯编程竞赛中的一个典型题目,来源于中国古代禅宗传说中僧侣们之间的智慧较量。在竞赛中,这个题目要求参赛者运用算法和编程技巧,模拟高僧们的斗智过程,对问题进行求解。这个题目的设置,旨在考察参赛者对算法设计、数据结构和编程实践的理解和应用能力。

2.1.2 题目详细描述及解析

题目描述了一个假想的场景,即多位高僧通过斗法来比试智慧。每位高僧都有自己的法力值和法术,需要在一系列回合中与其他高僧对决。每个回合中,高僧可以施展法术,法术的效果会根据法力值和法术强度来决定。游戏的目标是通过策略性的对决,成为最后的胜利者。

解析这个题目时,需要考虑以下几个关键点:

  • 如何表示高僧的状态,包括法力值、法术等信息。
  • 对决过程的模拟,即如何实现回合制的对决逻辑。
  • 胜利条件的判断,即如何确定游戏何时结束以及谁是胜利者。

2.2 “高僧斗法”参考代码解析

2.2.1 参考代码的逻辑结构

为了实现上述的游戏逻辑,我们提供了一份参考代码。该代码的逻辑结构可以分为以下几个部分:

  • 初始化:设置游戏的初始状态,包括所有高僧的法力值和法术。
  • 回合制对决:每个回合模拟所有高僧的行为,包括选择法术和攻击。
  • 胜利条件判断:在每个回合结束后,判断是否还有高僧能够继续战斗,以及游戏的胜利者。
2.2.2 关键算法与代码优化

关键算法部分涉及到了如何高效地处理每位高僧在回合制中的选择和攻击。考虑到算法的效率和代码的可读性,我们选择使用数组来存储高僧的状态,并通过循环来模拟每个回合的动作。以下是一段关键的代码示例:

struct Monk {
    int power; // 法力值
    int skill; // 法术强度
    // ... 其他属性
};

int main() {
    vector<Monk> monks; // 存储所有高僧的信息
    // 初始化代码省略

    while (true) {
        // 模拟每个回合的对决
        for (int i = 0; i < monks.size(); ++i) {
            // 高僧i选择法术
            // 高僧i攻击其他高僧
        }
        // 检查是否结束游戏
        bool gameOver = checkGameOver(monks);
        if (gameOver) break;
    }

    // 输出胜利者信息
    printWinner(monks);
    return 0;
}

在这段代码中, Monk 结构体用于存储每个高僧的信息。主函数中的 while 循环用于模拟游戏的每个回合。在循环中,每个高僧都会进行法术的选择和攻击。 checkGameOver 函数用于检查游戏是否结束,而 printWinner 函数用于输出最终的胜利者信息。

为了提高代码的执行效率,可以采用一些优化策略,例如:

  • 预先计算可能的法术效果,并在循环中使用这些预计算值。
  • 如果高僧选择的法术不会改变当前局势,则可以跳过这一高僧的回合。
  • 使用优先队列等数据结构优化法术选择过程。

通过这些优化方法,可以在保证代码正确性的基础上,有效提升算法的执行效率。

在下文将详细讨论如何进一步深化这些优化策略,以提高代码的性能,并满足高级IT从业者的实际需求。

3. 算法设计与编程能力提升

3.1 算法设计的基本原理

3.1.1 算法的时间复杂度与空间复杂度

算法的时间复杂度和空间复杂度是衡量算法性能的两个重要指标。时间复杂度反映了算法运行所需要的执行时间,而空间复杂度则反映了算法运行所需要的存储空间。在实际应用中,我们通常需要在时间和空间上做平衡。

时间复杂度通常使用大O表示法来描述,它表示随着输入规模n的增加,算法执行时间的增长速度。例如,如果一个算法的时间复杂度为O(n),那么算法的执行时间将与输入规模n成正比。常见的还有O(1)(常数时间)、O(log n)(对数时间)、O(n log n)、O(n^2)(平方时间)等。

空间复杂度是衡量算法在运行过程中临时占用存储空间大小的一个量度,它同样采用大O表示法。例如,一个算法的输入输出不占用额外空间,仅需要一个变量来存储计算结果,则该算法的空间复杂度为O(1)。

在实际设计算法时,我们应尽量减少算法的时间和空间复杂度,以提升算法效率。

3.1.2 常见算法模式的识别与应用

在算法设计中,识别常见的算法模式是非常重要的。这些模式包括但不限于分治法、动态规划、贪心算法、回溯算法等。理解这些模式并能将之应用于适当的问题,可以显著提升问题解决的效率。

  • 分治法(Divide and Conquer):通过将原问题分解为若干个规模较小但类似于原问题的子问题,递归求解这些子问题,然后再合并其结果,得到原问题的解。

  • 动态规划(Dynamic Programming):在求解问题时,采用递推和记忆化的技术,将已经解决的子问题的解存储起来,避免重复计算。

  • 贪心算法(Greedy Algorithm):在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。

  • 回溯算法(Backtracking):一种通过探索所有可能的候选解来找出所有解的算法,如果候选解被确认不是一个解(或者至少不是最后一个解),回溯算法会丢弃该解。

这些算法模式在不同的问题领域中有着广泛的应用。比如动态规划特别适合解决最优化问题,而贪心算法则在各种资源分配和调度问题中表现良好。

3.2 编程能力提升的实战技巧

3.2.1 编程实践中的常见问题

在编程实践中,我们经常会遇到一些常见的问题,这些问题如果不注意,可能会影响最终程序的性能甚至导致程序运行失败。以下是一些需要注意的常见问题:

  • 代码冗余 :重复的代码段应该重构为函数或方法,以减少代码的冗余度。

  • 内存泄漏 :不恰当的内存管理会导致内存泄漏,应确保及时释放不再使用的内存资源。

  • 线程安全 :在多线程环境下,需要关注线程安全问题,合理使用锁或其他同步机制。

  • 异常处理 :合理的异常处理能够确保程序在遇到错误时能够优雅地处理。

  • 性能瓶颈 :在关键部分优化代码,避免不必要的计算和I/O操作。

3.2.2 实战中代码质量的提升策略

为了提升代码质量,可以采取以下策略:

  • 单元测试 :编写单元测试可以确保代码的各个部分按预期工作。测试先行的开发方式能有效避免潜在的bug。

  • 代码复审 :通过代码复审,可以找出潜在的缺陷并提升代码质量。代码复审可以通过工具自动化进行,也可以手动进行。

  • 重构 :定期重构代码可以提升其可读性和可维护性。重构应是一个持续的过程,而不是一次性的活动。

  • 编写清晰的文档 :清晰的注释和文档能够帮助他人理解你的代码,也可以帮助未来的你快速回忆和理解。

  • 性能分析 :使用性能分析工具找出代码中的性能瓶颈,并进行针对性优化。

通过上述策略,可以有效提升编程能力,编写出更高质量的代码。在这一过程中,理论知识与实践经验相辅相成,共同促进技能的提升。

4. 常用算法实现与编程语言应用

4.1 动态规划、贪心算法、图论等算法实现

4.1.1 动态规划算法的核心思想与应用

动态规划(Dynamic Programming,DP)是一种算法思想,通常用来解决优化问题。它通过把原问题分解为相对简单的子问题的方式来求解,把子问题的解存储起来,避免重复计算。这种方法特别适合于有重叠子问题和最优子结构性质的问题。

核心思想

动态规划的核心是找到状态转移方程,这通常是解决动态规划问题的关键所在。状态转移方程能够描述如何从子问题的解得到原问题的解。一旦状态转移方程确定,动态规划算法就相对容易实现。

graph TD;
    A[开始] --> B[定义状态];
    B --> C[寻找状态转移方程];
    C --> D[初始化边界条件];
    D --> E[按顺序计算状态];
    E --> F[得出最终解];
    F --> G[结束];
应用实例

举一个经典的动态规划问题:背包问题。给定一组物品,每种物品都有自己的重量和价值,确定在限定的总重量内如何选择物品,使得物品的总价值最大。

假设物品集合为 {(w1,v1), (w2,v2), ..., (wn,vn)} ,背包的限重为 W ,我们需要求解最大价值 V

def knapsack(values, weights, W):
    n = len(values)
    # 初始化一个二维数组 dp,用于存储不同状态下的最大价值
    dp = [[0 for _ in range(W + 1)] for _ in range(n + 1)]
    # 填充数组
    for i in range(1, n + 1):
        for w in range(1, W + 1):
            if weights[i-1] <= w:
                dp[i][w] = max(dp[i-1][w], values[i-1] + dp[i-1][w-weights[i-1]])
            else:
                dp[i][w] = dp[i-1][w]
    return dp[n][W]

values = [60, 100, 120]
weights = [10, 20, 30]
W = 50
print(knapsack(values, weights, W))

在这个问题中,我们定义状态 dp[i][w] 表示在前 i 件物品中,能够装入容量为 w 的背包中的最大价值。然后按照物品和容量逐步填充这个状态表,最终得到的答案就是 dp[n][W]

4.1.2 贪心算法与图论算法的案例解析

贪心算法

贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法并不保证会得到最优解,但在某些问题中贪心策略的解是全局最优解。

图论算法

图论算法处理的是图和网络的问题,例如最短路径、最小生成树、网络流等。图论算法在解决网络设计、社交网络分析、地图导航等实际问题中非常有用。

案例解析

以寻找最小生成树问题为例,其中最著名的算法是普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法。这里以Prim算法为例进行解析。

Prim算法从某个顶点开始,不断向生成树中增加最小边,直到包含所有顶点。其关键步骤是选择最小权值的边并确保不会形成环。

import heapq

def prim(graph):
    num_nodes = len(graph)
    # 初始化
    mst = []  # 最小生成树
    visited = [False] * num_nodes
    visited[0] = True
    edges = [(cost, start, end) for start, adj in enumerate(graph) for end, cost in adj]
    heapq.heapify(edges)
    # 以顶点0开始构建最小生成树
    while edges:
        cost, start, end = heapq.heappop(edges)
        if visited[end]:
            continue
        visited[end] = True
        mst.append((start, end, cost))
        for next_end, next_cost in graph[end]:
            if not visited[next_end]:
                heapq.heappush(edges, (next_cost, end, next_end))
    return mst

# 示例图数据结构
graph = [
    [(1, 10), (2, 5)],
    [(0, 10), (2, 3), (3, 9)],
    [(0, 5), (1, 3), (3, 15), (4, 6)],
    [(1, 9), (2, 15), (4, 11)],
    [(2, 6), (3, 11)]
]
print(prim(graph))

在这个例子中,图使用邻接表来表示。算法从顶点0开始,逐渐增加顶点到最小生成树中,直到覆盖所有顶点。每次选择的边都是连接已访问顶点和未访问顶点的最小权值边,使用优先队列(最小堆)来维护这样的边,保证每次都能快速获取最小边。

4.2 C++、Java、Python编程语言的应用

4.2.1 各语言在算法竞赛中的优势与特点

C++、Java和Python是算法竞赛中常用的三种编程语言。每种语言都有其独特的优势和特点,这也影响了它们在不同问题中的应用。

C++

C++语言以其高性能和对系统级操作的强大支持而闻名。在算法竞赛中,C++的STL(标准模板库)提供了快速而方便的数据结构和算法实现。C++允许使用指针进行更精细的内存管理,这对于优化算法性能非常有帮助。

Java

Java语言的跨平台和强大的类库支持是它的优势。它的垃圾回收机制使得内存管理较为简单。Java有丰富的类库,包括用于并发操作的工具,这使得它在需要多线程处理的问题中非常有用。

Python

Python以其简洁的语法和丰富的第三方库受到开发者的青睐。在算法竞赛中,Python能够快速实现算法原型,特别适合于需要快速编写和测试代码的场景。另外,Python有强大的数据处理和机器学习库,适用于数据处理和算法分析。

4.2.2 语言特性对算法实现的影响

编程语言的特性对算法实现有直接影响。数据类型、内存管理、内置函数和库函数都会对编码效率和程序性能产生影响。

C++的影响

C++的模板和STL库使得很多算法实现非常方便。例如,对于排序问题,可以直接使用 std::sort() ,而不需要自己实现复杂的排序算法。C++的迭代器和引用也非常有用,它们允许在算法实现中轻松地操作数据结构。

#include <algorithm> // 包含STL中的算法库

std::vector<int> arr = {4, 1, 3, 7, 5};
std::sort(arr.begin(), arr.end()); // 使用STL中的排序算法
Java的影响

Java的集合框架提供了丰富的数据结构实现,如List、Set、Map等,使得算法实现更为简洁。Java的并发工具类,如ExecutorService和FutureTask,允许算法实现充分利用多核处理器的性能。

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

List<Integer> list = new ArrayList<Integer>();
Collections.sort(list); // 使用Java的集合框架进行排序
Python的影响

Python的列表推导式和生成器表达式非常适合于快速实现数据转换和过滤操作。此外,Python的装饰器可以方便地实现算法的性能分析和调试。

def some_algorithm(data):
    return [x * 2 for x in data] # 列表推导式快速实现数据倍增

data = [1, 2, 3, 4, 5]
print(some_algorithm(data))

在算法竞赛中,选择合适的编程语言可以提高编码速度和效率,减少错误。了解每种语言的特性和优势,可以帮助我们更好地利用语言本身的特点来优化算法实现。

5. 示例输入输出及问题解决过程

5.1 输入输出格式的重要性

5.1.1 格式化输入输出的标准与规范

在编程竞赛中,输入输出格式的准确性对于问题的解决至关重要。一个看似简单的错误,比如格式化错误或遗漏的换行符,都可能导致程序无法得到正确的评分。因此,理解并遵循给定问题的输入输出标准和规范是至关重要的。

为了确保输入输出的准确性,选手必须仔细阅读问题描述,了解所需的输入输出格式。输入输出的格式包括数据的输入顺序、数据类型的分隔符(如空格或换行符)、输出结果的精度要求等。

例如,在某些问题中,输出结果需要保留固定小数点后位数,此时可以使用C++中的 fixed setprecision 来控制输出精度,如:

#include <iostream>
#include <iomanip> // 包含控制输出格式的库
using namespace std;

int main() {
    double num = 3.14159;
    cout << fixed << setprecision(2) << num << endl; // 输出保留两位小数
    return 0;
}

该代码将输出 3.14 ,因为使用了 setprecision(2) 设置了输出的精度。

5.1.2 输入输出设计在问题解决中的角色

在设计输入输出格式时,一个常见的做法是首先确定输入数据的来源和数量,然后根据需要处理的数据类型来设计输出格式。在设计时需要考虑到程序的运行效率,尽量减少不必要的输入输出操作。

设计输入输出格式不仅关系到程序的效率,还关系到程序的健壮性。良好的输入输出设计应能够适应各种异常情况,如数据量过大或格式不正确的情况。实现时,可通过异常处理机制来增强程序的鲁棒性,如使用 try-catch 语句。

5.2 典型问题解决案例分析

5.2.1 典型问题的分析思路

在解决典型编程问题时,分析思路是关键。首先,要弄清楚问题的本质,包括问题的输入输出要求、限制条件以及期望的算法复杂度。这通常涉及到对问题的分解,将大问题分解为若干个小问题,并且确定解决每个小问题的算法和数据结构。

例如,若面对一个需要排序的典型问题,首先考虑排序算法的时间复杂度,是否满足题目对时间复杂度的要求,如快速排序、归并排序等。如果数据范围较小,也可能考虑使用插入排序等简单算法。

一旦确定了分析思路,就需要进行伪代码设计。伪代码是算法和程序设计前的蓝图,有助于理清逻辑和算法流程。例如:

输入:整数数组arr
输出:排序后的数组
算法步骤:
1. 选择排序算法
2. 进行排序操作
3. 返回排序后的数组

5.2.2 问题解决过程中的关键步骤

解决一个问题的过程大致可以分为以下几个关键步骤:

  1. 理解问题 :深入理解问题描述,包括输入输出格式,数据类型以及限制条件。
  2. 设计解决方案 :根据问题的需求,设计一个或多个合适的算法,并选择合适的编程语言和数据结构。
  3. 编写伪代码 :在编码之前,先用伪代码将算法步骤具体化,这有助于提前发现逻辑错误。
  4. 编码实现 :根据伪代码,将算法转化为实际的代码,并确保代码的清晰性和可维护性。
  5. 测试验证 :通过编写测试用例来验证程序的正确性,并对程序进行调试。
  6. 优化调整 :根据测试结果,对程序进行必要的优化,如减少空间复杂度或提高执行速度。
    具体实现中,如在C++中,通常会用到迭代器或指针来处理数组或容器中的数据,如使用 std::sort 函数进行排序:
#include <algorithm> // 引入算法库

int main() {
    std::vector<int> vec = {4, 2, 5, 3, 1};
    std::sort(vec.begin(), vec.end()); // 对向量进行排序
    for(auto val : vec) {
        std::cout << val << " "; // 输出排序后的数组
    }
    return 0;
}

问题解决的过程不是一个单向的线性流程,它往往需要在理解问题、设计解决方案、编写伪代码、编码实现和测试验证等步骤之间不断迭代。优秀的开发者能够在这一过程中快速识别问题,并有效地调整解决方案。

6. 数据结构与算法理解与实践

6.1 数据结构的重要性与基础

数据结构是编程中用于组织和存储数据的方式,它们对于算法的效率和实现具有决定性影响。理解数据结构是深入学习算法的前提,也是解决问题的关键。

6.1.1 数据结构与算法的相互关系

数据结构为算法提供原材料,而算法则是对这些原材料的处理和操作。两者相辅相成,缺一不可。例如,堆是一种特殊的完全二叉树,它支持快速访问最大元素,并在插入和删除操作中保持这个属性,适用于实现优先队列这样的算法。

6.1.2 常见数据结构的原理与应用

  • 数组和链表 :这两种是最基础的数据结构,用于存储线性序列。数组提供快速随机访问,而链表在插入和删除操作中更加灵活。
  • 栈和队列 :这两种数据结构在算法中非常常见,分别用于实现后进先出(LIFO)和先进先出(FIFO)的逻辑。
  • 树和图 :它们用于表示层次结构和复杂网络。树的遍历算法(如深度优先搜索DFS和广度优先搜索BFS)是图论的基础。
  • 哈希表 :通过哈希函数,哈希表能够以接近常数时间复杂度实现快速的查找、插入和删除操作。

在实践中,选择合适的数据结构可以极大提高算法的效率。例如,在需要频繁查找数据的应用场景中,使用哈希表可以比使用数组或链表更快地实现查找操作。

6.2 实践中的算法理解与应用

理解数据结构和算法的理论知识是基础,而将其应用到实际问题的解决中是提升的关键。

6.2.1 算法理论与实践相结合的策略

将算法理论应用到实践中,需要通过编码来实现算法,并通过不断练习和调整来熟悉算法的细节。例如,在实现图的遍历时,可以根据问题的不同选择使用DFS或BFS,并编写代码来遍历图中的所有节点。

// C++ 实现 DFS 的代码示例
void DFS(Graph& graph, int vertex, vector<bool>& visited) {
    visited[vertex] = true;
    cout << "Visited " << vertex << endl;
    for (auto& neighbor : graph.neighbors(vertex)) {
        if (!visited[neighbor]) {
            DFS(graph, neighbor, visited);
        }
    }
}

在实际编码中,代码的清晰性和效率同等重要。优化算法时,要考虑其时间和空间复杂度,以及如何通过数据结构的选择来优化。

6.2.2 实际问题中算法选择与优化实例

在解决实际问题时,算法选择应基于问题的特性以及预期的目标。例如,当需要找出一组数中的最大值和最小值时,可以使用最小堆和最大堆来同时获得这两个值,这样可以在O(logn)时间复杂度内完成查询,而不需要遍历整个数组。

在遇到性能瓶颈时,尝试不同的算法和数据结构可能带来显著的性能提升。例如,在处理大数据集时,通过使用树结构(如Trie树)来存储字符串,可以加快字符串搜索的速度。

总结而言,数据结构与算法是编程中的核心元素,它们不仅在理论研究中占有重要地位,而且在实际应用中同样具有极高的价值。通过不断的实践和优化,开发者能够更加高效地解决复杂的编程问题,并持续提升自身的编程能力。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:这是一个针对蓝桥杯全国性编程竞赛的资源压缩包,包含历年“高僧斗法”题目的参考代码和解决方案。这些资源旨在提升参赛者在软件和信息技术领域的专业技能,特别是算法设计和编程能力。压缩包中的参考代码以C++、Java、Python等主流编程语言编写,涵盖了动态规划、贪心算法、图论等算法思想,并通过示例输入输出帮助理解和实现算法。通过分析这些代码,参赛者可以学习如何将问题抽象为数据结构和算法,并在编程实践中提升效率和代码质量。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习启发因子优化,实现路径的动态调整多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑实时避障等多目标协同优化;③为智能无人系统的自主决策环境适应能力提供算法支持; 阅读建议:此资源结合理论模型MATLAB实践,建议读者在理解ACOMLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值