可以使用 DataFrame.apply 方法来对 DataFrame 中的每一列应用函数。例如,可以使用内置的 len 函数来计算每一列中的数据个数:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]})
counts = df.apply(len)
print(counts)
输出:
A 4
B 4
dtype: int64
此方法将返回一个包含每一列数据个数的序列。
如果希望返回一个 DataFrame,可以使用如下代码:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]})
counts = df.apply(len, axis=0).to_frame().T
print(counts)
输出:
A B
0 4 4
此方法将返回一个具有一行和与原始 DataFrame 中的列数相同的列数的新 DataFrame。
通过使用pandas的applymap()方法结合len()函数,可以方便地统计DataFrame中每个元素出现的次数。首先,applymap()将len()应用到DataFrame的每个单元格上,然后得到一个Series,展示每列数据的个数。若想得到DataFrame格式的结果,可以进一步转换,得到一个新的一行数据,列数与原DataFrame相同,展示各列的元素数量。
1628

被折叠的 条评论
为什么被折叠?



