如何简单快捷的将DataFrame中所有列的数据进行个数的统计

通过使用pandas的applymap()方法结合len()函数,可以方便地统计DataFrame中每个元素出现的次数。首先,applymap()将len()应用到DataFrame的每个单元格上,然后得到一个Series,展示每列数据的个数。若想得到DataFrame格式的结果,可以进一步转换,得到一个新的一行数据,列数与原DataFrame相同,展示各列的元素数量。

可以使用 DataFrame.apply 方法来对 DataFrame 中的每一列应用函数。例如,可以使用内置的 len 函数来计算每一列中的数据个数:

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]})

counts = df.apply(len)
print(counts)

输出:

A    4
B    4
dtype: int64

此方法将返回一个包含每一列数据个数的序列。

如果希望返回一个 DataFrame,可以使用如下代码:

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [5, 6, 7, 8]})

counts = df.apply(len, axis=0).to_frame().T
print(counts)

输出:

A  B
0  4  4

此方法将返回一个具有一行和与原始 DataFrame 中的列数相同的列数的新 DataFrame。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值