从本文开始介绍用于机器人动力学建模与分析的空间向量方法。本文是对一篇讲义的编译。这篇讲义通过对物体运动和描述方法的分析,引入了一种更为有效的描述刚体运动的方法,这种方法使用的基本工具就是六维的空间向量。
什么是空间向量?
空间向量(Spatail Vectors)首先是一种向量,它提供了关于刚体运动状态或施加在其上的力的完整描述。它与欧氏向量提供的关于运动状态和受力的完整描述是一样的。特别的,空间向量将刚体运动或力的线性运动和旋转运动两个方面结合成了一个单独的量。
空间向量为什么好用?
在对单个刚体或刚体系统进行运动学及动力学的描述、分析和计算的时候,空间向量为我们提供了简洁的符号。
更少的未知数
更少的方程
更省力
更少的错误
向量(Vectors)
根据定义,向量就是向量空间(vector space)中的的一个元素
向量空间则是一种数学结构,它包含了一个交换群 ,一个域 ,以及一个二元运算符它定义了一个映射 . 的元素就叫作向量(vector), 的元素叫作标量(scalar)
对于所有的向量,加法和标量乘法都需要被定义
不同种类的向量
大部分向量都有一些额外的属性。我们将使用的向量有三种,它们各自有自己的特殊属性
向量场
向量场就是一个函数,它将欧氏空间中的每一个点映射为这个点的欧氏向量。事实上,它为空间中的每一个点结合了一个大小和一个方向。向量场可以描述各种物理现象,比如:
力场(重力、磁力等)
流体流动
刚体速度
下图是一个向量场示意图
下面是两个向量场相加的图例
速度向量场
体固定点(body-fixed point)是一个固定在刚体相对位置上的点,当刚体运动的时候这些点也跟着运动,如图
可以想象一下整个空间中都充满了这种体固定点,那么当刚体运动的时候我们就定义了一个向量场。特别的,物体速度可以定义一个速度向量场,这个场指定了体固定点在通过空间里的每一点时的线性速度。
刚体在三维空间中运动时所有可能的速度都由向量场来描述,向量场的集合可以构成一个六维向量空间。这个空间的元素就是空间速度向量(spatial velocity vectors)
螺旋运动(Screwing Motion)
刚体最常见的运动模式就是螺旋运动(screwing motion)。它由一个移动和一个关于空间特定直线的旋转组成。这条直线叫作瞬时旋转轴(instantaneous screw axis),速度向量场则呈现螺旋状。
现在,物体的运动可以用两个数和一条线来描述了:
一个是线速度的大小
一个是角速度的大小
那条线则是瞬时旋转轴
质点和刚体速度的区别是很显然的:
质点只有大小和方向(三维的欧氏向量)
刚体有两个大小和一条线(六维空间向量)
坐标
现在我们可以用两种方式来描述刚体的速度:
用一个向量场
用两个数和一条线
然而,所有的速度都是向量空间中的元素,所以我们还有第三种方法:
六个基向量(six basis vectors)的线性组合
在这种情况下,速度就可以用六维坐标向量(6D coordinate vector)来描述,这就是最有效的方法了。
最常用的基向量组合:
笛卡尔坐标系中关于 三个坐标轴的单位旋转
相同坐标系上 三个轴上的单位移动
我们把这个基称为普吕克基(Plücker basis),它产生了普吕克坐标系统(Plücker coordinate system)
总结
空间向量是根据它们的行为定义的
空间速度可以视为一个向量场
空间速度可以视为一个螺旋运动
空间速度可以用一个坐标向量来表示