python函数递归求和详解,在Python中递归求和子集

博客讨论了如何实现一个递归函数来检查一个数列中是否存在子序列之和等于目标值,并通过记忆化技术优化递归函数,提高效率。提供了两种解决方案:一个基础的递归实现和一个使用字典进行记忆化的版本。但作者在实现记忆化版本时遇到了问题,希望得到帮助。
摘要由CSDN通过智能技术生成

I will be happy to get some help.

I have the following problem:

I'm given a list of numbers seq and a target number and I need to write 2 things:

A recursive solution that returns True if there is a sum of a subsequence that equals the target number and False otherwise.

example:

subset_sum([-1,1,5,4],0) # True

subset_sum([-1,1,5,4],-3) # False

Secondly, I need to write a solution using what I wrote in the previous solution

but now with memoization that uses a dictionary in which the keys are tuples:

(len(seq),target)

For number 1 this is what I got to so far:

def subset_sum(seq, target):

if target == 0:

return True

if seq[0] == target:

return True

if len(seq) > 1:

return subset_sum(seq[1:],target-seq[0]) or subset_sum(seq[1:],target)

return False

Not sure I got it right so if I could get some input I will be grateful.

For number 2:

def subset_sum_mem(seq, target, mem=None ):

if not mem:

mem = {}

key=(len(seq),target)

if key not in mem:

if target == 0 or seq[0]==target:

mem[key] = True

if len(seq)>1:

mem[key] = subset_sum_mem(seq[1:],target-seq[0],mem) or subset_sum_mem(seq[1:],target,mem)

mem[key] = False

return mem[key]

I can't get the memoization to give me the correct answer so I'd be glad for some guidance here.

Thanks for anyone willing to help!

解决方案

Just for reference, here's a solution using dynamic programming:

def positive_negative_sums(seq):

P, N = 0, 0

for e in seq:

if e >= 0:

P += e

else:

N += e

return P, N

def subset_sum(seq, s=0):

P, N = positive_negative_sums(seq)

if not seq or s < N or s > P:

return False

n, m = len(seq), P - N + 1

table = [[False] * m for x in xrange(n)]

table[0][seq[0]] = True

for i in xrange(1, n):

for j in xrange(N, P+1):

table[i][j] = seq[i] == j or table[i-1][j] or table[i-1][j-seq[i]]

return table[n-1][s]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值