最好使用Sage或其他合适的工具。在
以下只是简单的非专家尝试,但是旋转高斯消去法应该给出可逆性的确切结果:import random
from scipy.linalg import toeplitz
import numpy as np
def is_invertible_F2(a):
"""
Determine invertibility by Gaussian elimination
"""
a = np.array(a, dtype=np.bool_)
n = a.shape[0]
for i in range(n):
pivots = np.where(a[i:,i])[0]
if len(pivots) == 0:
return False
# swap pivot
piv = i + pivots[0]
row = a[piv,i:].copy()
a[piv,i:] = a[i,i:]
a[i,i:] = row
# eliminate
a[i+1:,i:] -= a[i+1:,i,None]*row[None,:]
return True
n = 10
column = [random.choice([0,1]) for x in xrange(n)]
row = [column[0]]+[random.choice([0,1]) for x in xrange(n-1)]
matrix = toeplitz(column, row)
print(is_invertible_F2(matrix))
print(int(np.round(np.linalg.det(matrix))) % 2)
请注意,np.bool_仅在有限的意义上与F_2相似——Fୱ2中的二进制运算+是bool的-,一元运算-是{}。不过,乘法是一样的。在
^{pr2}$
上面的高斯消去法只使用这些运算,所以它是有效的。在
5491

被折叠的 条评论
为什么被折叠?



