matlab图像信息熵交叉熵,【机器学习】信息量,信息熵,交叉熵,KL散度和互信息(信息增益)...

本文深入浅出地介绍了信息论的基本概念,包括信息量、信息熵、交叉熵和KL散度,并探讨了它们在机器学习中的作用,特别是作为损失函数的应用。文章通过大量图像和直观解释,帮助读者理解这些概念如何影响编码效率和模型训练。
摘要由CSDN通过智能技术生成

首先先强烈推荐一篇外文博客Visual Information Theory这个博客的博主colah是个著名的计算机知识科普达人,以前很是著名的那篇LSTM讲解的文章也是他写的。这篇文章详细讲解了信息论中许多基本概念的前因后果,并且很是的直观用了大量的图片,和形象化的解释。git

信息量

信息量用一个信息所须要的编码长度来定义,而一个信息的编码长度跟其出现的几率呈负相关,由于一个短编码的代价也是巨大的,由于会放弃全部以其为前缀的编码方式,好比字母”a”用单一个0做为编码的话,那么为了不歧义,就不能有其余任何0开头的编码词了.因此一个词出现的越频繁,则其编码方式也就越短,同时付出的代价也大.

github

I=log2(1p(x))=−log2(p(x))

信息熵

而信息熵则表明一个分布的信息量,或者编码的平均长度

web

H(p)=∑xp(x)log2(1p(x))=−∑xp(x)log2(p(x))

即信息量的均值

交叉熵 cross-entropy

交叉熵本质上能够当作,用一个猜想的分布的编码方式去编码其真实的分布,获得的平均编码长度或者信息量

机器学习

Hp(q)=∑xq(x)log2(1p(x))

如上面的式子,用猜的的p分布,去编码本来真是为q的分布,获得的信息量

交叉熵 cross-entropy在机器学习领域的做用

交叉熵cross-entropy在机器学习领域中常常做为最后的损失函数

为何要用cross-entropy呢,他本质上至关于衡量两个编码方式之间的差值,由于只有当猜想的分布约接近于真实分布,则其值越小。

好比根据本身模型获得的A的几率是80%,获得B的几率是20%,真实的分布是应该获得A,则意味着获得A的几率是100%,因此

svg

L=−∑iyilog(p(xi))+(1−yi)log(1−p(xi))

在LR中用cross-entry比平方偏差方法好在:

在LR中,若是用平方损失函数,则损失函数是一个非凸的,而用cross-entropy的话就是一个凸函数

用cross-entropy作LR求导的话,获得的导数公式以下

∂L∂θj=−∑i(yi−p(xi))xij

而用平方损失函数的话,其求导结果为

∂L∂θj=−∑i(yi−p(xi))p′(xi)

平方损失函数中会出现p′(xi)而sigmoid函数的导数会出现梯度消失的问题【一些人称之为饱和现象】

KL散度

KL散度/距离是衡量两个分布的距离,KL距离通常用D(q||p)或者Dq(p)称之为q对p的相对熵函数

Dq(p)=Hq(p)−H(p)=∑xq(x)log2(q(x)p(x))

KL散度与cross-entropy的关系

用图像形象化的表示两者之间的关系能够以下图:

7f04138f8a2a873c910305b5d32c3961.png

上面是q所含的信息量/平均编码长度H(p)

第二行是cross-entropy,即用q来编码p所含的信息量/平均编码长度|或者称之为q对p的cross-entropy

第三行是上面二者之间的差值即为q对p的KL距离post

非负性证实

根据上图显然其为非负的,可是怎么去证实呢,仍是利用琴生不等式

学习

Dq(p)=∑xq(x)log2(q(x)p(x))

=−∑xq(x)log2(p(x)q(x))

=−E(log2(p(x)q(x)))

≥log2E(p(x)q(x))

=log2∑xq(x)(p(x)q(x))

=log2∑xp(x)

由于

∑xp(x)=1

因此上式

Dq(p)≥0

非负性证实完成

联合信息熵和条件信息熵

下面几条咱们要说的是联合分布中(即同一个分布中)的两个变量相互影响的关系,上面说的KL和cross-entropy是两个不一样分布之间的距离度量【我的理解是KL距离是对于同一个随机事件的不一样分布度量之间的距离,因此是1.同一随机事件*2.不一样分布*】。

b949e5d3ffafa44dc4f42fb2cd147b0b.png编码

联合信息熵:

atom

H(X,Y)=∑x,yp(x,y)log2(1p(x,y))

条件信息熵:

H(X|Y)=∑yp(y)∑xp(x|y)log2(1p(x|y))

=∑x,yp(x,y)log2(1p(x|y))

举个例子,更容易理解一些,好比天气是晴天仍是阴天,和我穿短袖仍是长袖这两个事件其能够组成联合几率分布

H(X,Y)

因此对应着上面的第一条,而对于

H(x)

来讲就是下面第二横行,由于两个时间加起来的信息量确定是大于单一一个事件的信息量的。像

H(x)

对应着今每天气分布的信息量。

而今每天气和我今天穿衣服这两个随机几率事件并非独立分布的,因此若是已知今每天气的状况下,个人穿衣的信息量/不肯定程度是减小了的。

因此当已知

H(x)

这个信息量的时候,联合分布

H(X,Y)

剩余的信息量就是

条件熵:

H(Y|X)=H(X,Y)−H(X)

根据上面那个图,也能够通俗的理解为已知X的状况下,H(X,Y)剩余的信息量

互信息(信息增益)

互信息就是一个联合分布中的两个信息的纠缠程度/或者叫相互影响那部分的信息量

I(X,Y)=H(X)+H(Y)−H(X,Y)

I(X,Y)=H(Y)−H(Y|X)

决策树中的信息增益就是互信息,决策树是采用的上面第二种计算方法,即把分类的不一样结果当作不一样随机事件Y,而后把当前选择的特征当作X,则信息增益就是当前Y的信息熵减去已知X状况下的信息熵。

经过下图的刻画更为直观一些

c73b29b379bafd5820bc10533cd9b614.png

以上图能够清楚的看到互信息I(X,Y)的不一样求法

这里还有另一个量叫variation of information【不知道中文名叫啥】

V(X,Y)=H(X,Y)−I(X,Y)

Variation of information度量了不一样随机变量之间的差异,若是

V(X,Y)=0

说明这两个变量是彻底一致的,其约大说明两个变量越独立。

这里再注意一下Variation of information和KL距离的差异:

Variation of information是联合分布中(即

同一个分布中)的两个变量相互影响的关系

KL和cross-entropy是

两个不一样分布之间的距离度量

非负性证实

I(X,Y)=H(X)+H(Y)−H(X,Y)

=−∑x,yp(x,y)(log(p(x))+log(p(y))−log(p(x,y)))

=−∑x,yp(x,y)(log(p(x)p(y)p(x,y)))

=D(P(X,Y)||P(X)P(Y))

即互信息能够转化成两个分布

P(X,Y)

P(X)P(Y)

之间的KL距离,而KL距离的非负性在上面已经被证实过了,因此

I(X,Y)≥0

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值