想明白普适解法的话随便找本微分方程的教材看看
主楼的是最基本的齐次线性微分方程组了
如果只是打算求解这个方程组的话
扔到Mathematica里面几秒就出结果
M = ( {
{0, 0, -1, 0},
{0, 0, 0, -5},
{-1, 1, 0, 0},
{1, -3, 0, 0}
} );
Eigenvalues[M]
Y[t_] = {y1[t], y2[t], y3[t], y4[t]};
system = Y'[t] == M.Y[t];
sol = DSolve[system, {y1, y2, y3, y4}, t]
比如说解出
y1 -> Function[{t}, (1/(12 Sqrt[6 (8 - 3 Sqrt[6])]))
E^(-Sqrt[8 - 3 Sqrt[6]] t -
Sqrt[8 + 3 Sqrt[6]]
t) (-7 Sqrt[8 - 3 Sqrt[6]] E^(Sqrt[8 - 3 Sqrt[6]] t) +
3 Sqrt[6 (8 - 3 Sqrt[6])] E^(Sqrt[8 - 3 Sqrt[6]] t) -
Sqrt[8 - 3 Sqrt[6]] E^(Sqrt[8 + 3 Sqrt[6]] t) +
Sqrt[10 (8 + 3 Sqrt[6])] E^(Sqrt[8 + 3 Sqrt[6]] t) -
Sqrt[8 - 3 Sqrt[6]] E^(
2 Sqrt[8 - 3 Sqrt[6]] t + Sqrt[8 + 3 Sqrt[6]] t) +
Sqrt[10 (8 + 3 Sqrt[6])] E^(
2 Sqrt[8 - 3 Sqrt[6]] t + Sqrt[8 + 3 Sqrt[6]] t) -
7 Sqrt[8 - 3 Sqrt[6]] E^(
Sqrt[8 - 3 Sqrt[6]] t + 2 Sqrt[8 + 3 Sqrt[6]] t) +
3 Sqrt[6 (8 - 3 Sqrt[6])] E^(
Sqrt[8 - 3 Sqrt[6]] t + 2 Sqrt[8 + 3 Sqrt[6]] t)) C[1] + (
E^(-Sqrt[8 - 3 Sqrt[6]] t -
Sqrt[8 + 3 Sqrt[6]] t) (-E^(Sqrt[8 - 3 Sqrt[6]] t) + E^(
Sqrt[8 + 3 Sqrt[6]] t) + E^(
2 Sqrt[8 - 3 Sqrt[6]] t + Sqrt[8 + 3 Sqrt[6]] t) - E^(
Sqrt[8 - 3 Sqrt[6]] t + 2 Sqrt[8 + 3 Sqrt[6]] t)) C[2])/(
12 Sqrt[6]) - (E^(-Sqrt[8 - 3 Sqrt[6]] t -
Sqrt[8 + 3 Sqrt[6]]
t) (7 Sqrt[8 - 3 Sqrt[6]] E^(Sqrt[8 - 3 Sqrt[6]] t) -
3 Sqrt[6 (8 - 3 Sqrt[6])] E^(Sqrt[8 - 3 Sqrt[6]] t) -
7 Sqrt[8 + 3 Sqrt[6]] E^(Sqrt[8 + 3 Sqrt[6]] t) -
3 Sqrt[6 (8 + 3 Sqrt[6])] E^(Sqrt[8 + 3 Sqrt[6]] t) +
7 Sqrt[8 + 3 Sqrt[6]] E^(
2 Sqrt[8 - 3 Sqrt[6]] t + Sqrt[8 + 3 Sqrt[6]] t) +
3 Sqrt[6 (8 + 3 Sqrt[6])] E^(
2 Sqrt[8 - 3 Sqrt[6]] t + Sqrt[8 + 3 Sqrt[6]] t) -
7 Sqrt[8 - 3 Sqrt[6]] E^(
Sqrt[8 - 3 Sqrt[6]] t + 2 Sqrt[8 + 3 Sqrt[6]] t) +
3 Sqrt[6 (8 - 3 Sqrt[6])] E^(
Sqrt[8 - 3 Sqrt[6]] t + 2 Sqrt[8 + 3 Sqrt[6]] t)) C[
3])/(12 Sqrt[
6 (8 - 3 Sqrt[6]) (8 + 3 Sqrt[6])]) + (5 E^(-Sqrt[8 - 3 Sqrt[6]]
t - Sqrt[8 + 3 Sqrt[6]]
t) (-Sqrt[8 - 3 Sqrt[6]] E^(Sqrt[8 - 3 Sqrt[6]] t) +
Sqrt[8 + 3 Sqrt[6]] E^(Sqrt[8 + 3 Sqrt[6]] t) -
Sqrt[8 + 3 Sqrt[6]] E^(
2 Sqrt[8 - 3 Sqrt[6]] t + Sqrt[8 + 3 Sqrt[6]] t) +
Sqrt[8 - 3 Sqrt[6]] E^(
Sqrt[8 - 3 Sqrt[6]] t + 2 Sqrt[8 + 3 Sqrt[6]] t)) C[
4])/(12 Sqrt[6 (8 - 3 Sqrt[6]) (8 + 3 Sqrt[6])])]