pythonic是什么意思_pythonic是什么意思?

博客揭示Python语言功能以生成清晰、简洁和可维护代码。指出Pythonic不仅要语法正确,还需遵循社区约定。通过对比Java与Python代码,如循环示例,说明unpythonic代码问题,强调代码可用更适合Python编码风格重写。
部署运行你感兴趣的模型镜像

揭示Python语言的功能,以生成清晰,简洁和可维护的代码。

Pythonic意味着代码不仅仅是获得正确的语法,而且遵循Python社区的约定,并以使用它的方式使用该语言。

这可能是最容易解释的负面例子,如在其他答案的链接文章。 unpythonic代码的例子通常来自其他语言的用户,而不是学习Python编程模式(如列表推导或生成器表达式),而是尝试在C或java中更常用的模式中使用撬杠。循环是特别常见的例子。

例如在Java中,我可能会使用

for i in (i; i < items.length ; i++)

{

n = items[i];

... now do something

}

在Python中,我们可以尝试使用while循环来复制它,但使用起来会更加清晰

enter code here

for i in items:

i.perform_action()

或者甚至是一个生成器表达式

(i.some_attribute for i in items)

所以基本上当有人说某事是愚蠢的时候,他们说这些代码可以用一种更适合蟒蛇编码风格的方式重新编写。

键入在命令行导入这一点给出了Python原理的总结。不太了解的是,“导入这个”的源代码是决定性的,并且通过设计,愚蠢!看看它的一个例子,没有做什么。

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

**PyTorch** 是一个基于 Python 的开源深度学习框架,广泛用于构建、训练和部署神经网络模型。它由 Facebook 的人工智能研究团队(FAIR)开发,目前已成为工业界和学术界最流行的深度学习框架之一。 --- ## 🧠 PyTorch 的核心含义 - **Torch**:是一个以 Lua 语言为基础的科学计算框架,PyTorch 是其 Python 版本。 - **Py**:代表 Python,PyTorch 专为 Python 开发者设计。 - **PyTorch = Python + Torch** --- ## 📌 PyTorch 的主要功能 1. **张量计算(Tensor Computation)** - 类似于 NumPy 的 `ndarray`,但支持 GPU 加速。 - 例如:`torch.Tensor` 是 PyTorch 的核心数据结构。 2. **自动微分(Autograd)** - 自动计算梯度,是训练神经网络的关键功能。 - 使用 `requires_grad=True` 标记需要计算梯度的张量。 3. **神经网络模块(`torch.nn`)** - 提供各种神经网络层(如线性层、卷积层、RNN、Transformer 等)。 - 提供损失函数(如交叉熵损失、均方误差等)。 4. **优化器(`torch.optim`)** - 提供常见的优化算法(如 SGD、Adam、RMSprop 等)。 5. **数据加载与处理(`torch.utils.data`)** - `Dataset` 和 `DataLoader` 类用于高效加载训练数据。 6. **GPU 加速** - 支持将张量和模型移动到 GPU 上进行加速计算。 --- ## ✅ PyTorch 的简单示例 以下是一个使用 PyTorch 实现线性回归的简单例子: ```python import torch import torch.nn as nn import torch.optim as optim # 定义一个简单的线性模型 y = wx + b class LinearRegression(nn.Module): def __init__(self): super(LinearRegression, self).__init__() self.linear = nn.Linear(1, 1) # 输入维度1,输出维度1 def forward(self, x): return self.linear(x) # 创建模型实例 model = LinearRegression() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # 准备一些训练数据 X = torch.tensor([[1.0], [2.0], [3.0]]) y = torch.tensor([[2.0], [4.0], [6.0]]) # 训练循环 for epoch in range(100): # 前向传播 outputs = model(X) loss = criterion(outputs, y) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print(f'Epoch {epoch+1}, Loss: {loss.item():.4f}') # 测试模型 test_input = torch.tensor([[4.0]]) predicted = model(test_input) print(f'预测结果: {predicted.item():.4f}') ``` --- ## 🧩 上述代码解释 | 部分 | 功能 | |------|------| | `nn.Module` | 所有神经网络模型的基类 | | `nn.Linear` | 线性层,实现 y = wx + b | | `MSELoss()` | 均方误差损失函数 | | `SGD` | 随机梯度下降优化器 | | `forward()` | 定义前向传播过程 | | `loss.backward()` | 自动计算梯度 | | `optimizer.step()` | 更新模型参数 | --- ## 🚀 PyTorch 的优势 | 优势 | 说明 | |------|------| | 动态计算图(Dynamic Computation Graph) | 更适合调试和开发 | | 易于使用 | 接口接近 Python 原生语法 | | 社区活跃 | 有大量教程、文档和模型库 | | 支持研究和生产 | 适合科研和部署(如 TorchScript) | --- ## 🔁 PyTorch 与 TensorFlow 的对比 | 项目 | PyTorch | TensorFlow | |------|---------|------------| | 计算图 | 动态图(Eager Execution) | 静态图(默认) | | 学术研究 | 更受欢迎 | 逐渐流行 | | 工业部署 | 支持良好 | 更成熟 | | API 风格 | 更 Pythonic | 更模块化 | | 学习曲线 | 较低 | 略高 | --- ##
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值