科盾打印系统连接不上服务器,科盾内网安全平台安装手册(Mysql)

1-91-png_6_0_0_134_42_48_57_892.83_1263-89-0-0-89.jpg

科盾内网安全平台快速安装

1.1 安装环境

条件一:硬件环境

服务器:内存512M以上,CPU主频1G以上,百兆网卡。

控制端:内存256M以上,CPU主频1G以上,百兆网卡。

客户端:内存256M以上,CPU主频1G以上,百兆网卡。

条件二:软件环境

服务器: Windows2000 SP4或者更高版本。(不支持Vista版本)

控制端: Windows2000 SP4或者更高版本。(不支持Vista版本)

客户端: Windows2000 SP4或者更高版本。(不支持Vista版本)

条件三:为本系统提供相应的端口

z 服务器需要使用以下端口,提供给客户端和管理中心使用(如表1-1所示)。

进程名 端口协议功能

NiordSecServer.exe 56788TCP数据库端口

NiordSecServer.exe 56790UDP接受客户端活动状态报告回复IP地址

NiordSecServer.exe 56792TCP文件服务器

NiordSecServer.exe 56793TCP日志服务器

NiordSecServer.exe 56795TCP备份命令接受

NiordSecServer.exe 56796UDP备份文件传送

表1-1 为本系统提供相应端口

需要在防火墙中配置规则,将以上端口设置为开放端口;

如果杀毒软件对NiordSecServer.exe的某些行为有阻止,需要将NiordSecServer.exe添加

到信任列表中去。

z 客户端需要使用以下端口,提供给服务器和管理中心使用(如表1-2所示)。

进程名 端口

SVCHOST.exe56789

SVCHOST.exe56791

Sysprotect.exe 56794协议UDPTCPTCP功能 获得服务器IP地址远程控制命令 远程屏幕

表1-2 客户端需要打开的端口

需要在防火墙中配置规则,将以上端口设置为开放端口;如果杀毒软件对

SVCHOST.exe、Sysprotect.exe的某些行为有阻止,需要将SVCHOST.exe、Sysprotect.exe添

加到信任列表中去。安装完成之后请立即重新启动计算机。

1.2 安装注意事项

软件安装时,推荐在服务器上也装上控制端,并建议按照下面的要求安装、部署。

1.2.1安装服务器注意事项

必须确保服务器能够ping通所有内网终端;

必须确保所有安全终端能正常连接1.1小节中“条件三”所述的端口;

由于内网安全平台服务器集成一个Mysql数据库服务器,安装完成之后安装目录下

会存放数据文件,所以建议服务器安装的磁盘空间大于10G;

在内网中只允许有一台服务器运行;

服务器安装完成之后,非必要情况请不要随意更改服务器IP地址。

课程基础概述本门课程,大喵将会打着大家从零打造一款属于大家自己的 CLI命令行脚手架工具,本课程主要面向新手同学,对命令行工具开发,前端工具开发感兴趣的同学,可以通过本门课程学习到如何使用Node.JS开发一款适配自身项目特色的脚手架命令行工具。并且也会带着大家推送自己开发完成的CLI工具到NPM线上仓库,供所有人下载安装使用。整个课程,大喵会详细讲解所需要依赖的第三方模块包的具体使用,让同学们可以举一反三开发具备自身特色的CLI工具,最终大喵会运用到前面所讲解的基础内容,独立自主开发一个具备 damiao [ add | delete | list | init ] 四种子命令的CLI脚手架工具。CLI命令行工具命令行工具(Cmmand Line Interface)简称cli,顾名思义就是在命令行终端中使用的工具。我们常用的 git 、npm、vim 等都是 cli 工具,比如我们可以通过 git clone 等命令简单把远程代码复制到本地。在目前前端工程大流行的环境下,vue-cli、create-reate-app、angular-cli 等等方便快捷的命令行脚手架工具诞生,极大的提升了我们的开发效率与质量,我们可以通过这些脚手架工具在本地快速构建我们的开发项目。 课程目录结构1、CLI课程介绍   2、CLI课程纲领和讲师介绍3、CLI课程内容概述    4、CLI命令行工具及场景应用5、CLI课程准备工具和技术   6、CLI课程收获和收益  7、CLI课程实战案例介绍   8、npm CLI 命令行工具发展现状9、创建第一个命令行自定义命令   10、process.argv 接收命令行参数11、commander 工具使用介绍一   12、commander 工具使用介绍二13、inquirer 工具使用介绍   14、ora 加载工具使用介绍15、chalk 颜色工具使用介绍   16、download-git-repo 仓库工具介绍17、创建脚手架命令   18、创建命令可执行文件19、damiao add 命令行指令开发   20、damiao add 模板录入校验21、damiao delete 命令行指令开发   22、damiao list 命令行指令开发23、damiao init 初始化项目指令开发   24、damiao init 指令参数输入校验25、damiao 命令行指令测试.mp4  26、创建npm个人账号及发布npm仓库27、全局安装脚手架工具
AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值