matlab 非线性拟合残差,多元非线性拟合求参数及残差分析

求帮帮忙

我想要算动力学参数的,有这样一组数据

y=k*exp(-E/(8*X1))*(1-X2)*(1-alog(1-X2))^0.5

我的数据如下

X1=

[868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

]

X2=[0.04889

0.05027

0.05164

0.05306

0.05445

0.05592

0.05746

0.05901

0.06055

0.06224

0.06381

0.06554

0.06724

0.06905

0.07087

0.07271

0.07458

0.07649

0.07851

0.08051

0.08263

0.08467

0.08686

0.08898

0.09122

0.09346

0.09581

0.09823

0.10057

0.1031

0.10554

0.1081

0.11068

0.11336

0.11595

0.1188

0.12158

0.12436

0.12716

0.13005

0.1329

0.13597

0.13899

0.14206

0.14505

0.14829

0.15137

0.15461

0.1578

0.16101

0.16431

0.16765

0.17103

0.1745

0.17794

0.1815

0.18496

0.1884

0.192

0.1956

0.19914

0.20283

0.2065

0.21015

0.2139

0.21757

0.22131

0.22502

0.22879

0.23248

0.2361

0.23993

0.24386

0.24761

0.25162

0.25529

0.25918

0.26314

0.26716

0.27091

0.27478

0.27887

0.28278

0.28673

0.29096

0.29512

0.2994

0.30354

0.30793

0.31205

0.31651

0.32088

0.32528

0.32952

0.33411

0.33881

0.34353

0.34817

0.35289

0.35763

0.36234

0.36721

0.37209

0.37701

0.38209

0.38703

0.39254

0.39774

0.40286

0.40849

0.41413

0.41949

0.42511

0.43068

0.43681

0.44246

0.44839

0.45441

0.46054

0.46659

0.47288

0.47911

0.48554

0.49185

0.49801

0.50477

0.51132

0.51815

0.52497

0.53155

0.53862

0.5454

0.55284

0.55967

0.56658

0.57388

0.58123

0.58829

0.59611

0.60318

0.61061

0.6181

0.62569

0.63321

0.64052

0.64801

0.65556

0.66292

0.67052

0.67808

0.68584

0.69305

0.70107

0.70835

0.71618

0.72377

0.7308

0.73865

0.74545

0.75326

0.76039

0.76776

0.77499

0.78207

0.78929

0.79605

0.80346

0.8099

0.81658

0.82302

0.82975

0.83618

0.84261

0.84874

0.85502

0.86079

0.86645

0.87237

0.87796

0.88343

0.88867

0.89387

0.89894

0.90384

0.90856

0.9132

0.91768

0.92216

0.92615

0.93023

0.93409

0.93778

0.94141

0.94479

0.94812

0.95115

0.95411

0.957]

Y=[0.01264

0.01291

0.0132

0.0135

0.01382

0.01415

0.01451

0.01487

0.01523

0.01562

0.01597

0.01636

0.01673

0.01713

0.01751

0.01789

0.01827

0.01865

0.01905

0.01944

0.01984

0.02022

0.02063

0.02102

0.02143

0.02185

0.0223

0.02276

0.0232

0.02365

0.02408

0.0245

0.02491

0.02533

0.02573

0.02616

0.02657

0.02696

0.02736

0.02775

0.02812

0.02851

0.02888

0.02925

0.02959

0.02995

0.03027

0.0306

0.0309

0.03119

0.03148

0.03176

0.03203

0.0323

0.03257

0.03284

0.03308

0.03332

0.03356

0.03378

0.03399

0.0342

0.03439

0.03457

0.03475

0.03493

0.0351

0.03526

0.03543

0.0356

0.03576

0.03594

0.03613

0.03631

0.03651

0.03669

0.0369

0.03713

0.03738

0.03762

0.0379

0.0382

0.03851

0.03885

0.03921

0.03958

0.03996

0.04034

0.04073

0.04112

0.04155

0.04198

0.04243

0.04288

0.04337

0.04388

0.04441

0.04494

0.04548

0.04604

0.04659

0.04716

0.04773

0.04831

0.04891

0.04951

0.05018

0.05082

0.05145

0.05216

0.05286

0.05352

0.05421

0.05489

0.05562

0.05628

0.05696

0.05764

0.05831

0.05897

0.05965

0.06031

0.06098

0.06163

0.06225

0.06292

0.06355

0.0642

0.06482

0.06539

0.06597

0.06651

0.06707

0.06757

0.06807

0.0686

0.0691

0.06955

0.07

0.07036

0.07069

0.07097

0.07117

0.07129

0.07135

0.07138

0.07145

0.07159

0.07181

0.07203

0.07222

0.07232

0.07229

0.07215

0.0719

0.07159

0.07125

0.07082

0.07041

0.0699

0.06939

0.06882

0.0682

0.06755

0.06682

0.06609

0.06522

0.06441

0.06351

0.06258

0.06156

0.06053

0.05945

0.05838

0.05723

0.05612

0.05499

0.05375

0.05252

0.05125

0.04998

0.04867

0.04734

0.04599

0.04463

0.04323

0.0418

0.04031

0.03892

0.03745

0.03602

0.03462

0.03319

0.03182

0.0304

0.02904

0.02766

0.02625

];

看文章说可以用最小二乘法算,使得拟合值和实验值的差值的平方和最小,但是我自己有不太懂matlab,所以就弄了很长时间,期望有大神能够帮帮忙,同时,告诉我该如何算出拟合的R2以及拟合值与实验值的偏差之类的,多谢多谢了!!!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值