计算机组成原理 第二章数据的表示和运算1
第二章 数据的表示和运算 考纲要求的四个方面内容: (一)数制与编码 (二)定点数的表示和运算 (三)浮点数的表示和运算 (四)算术逻辑单元ALU (一)数制与编码 该部分的考纲要求: 1。进位计数制及其相互转换 2。真值和机器数 3。BCD码 4。字符与字符串 5。校验码 (一)数制与编码 1。进位计数制及其相互转换(略) 2。真值和机器数 真值:机器所代表的实际值。符号位加数绝对值的形式。 为了妥善解决符号位参加运算的问题,就产生了把符号位和数字位一起编码来表示相应的数的各种表示方法,如原码、补码、反码、移码等。称为机器数或机器码。 (一)数制与编码 3。BCD码 用四个二进制代码的不同组合来表示一个十进制数码的编码方法,称为BCD码。通常采用压缩的BCD码表示十进制数串。常用的BCD码有8421码、余3码和格雷码。 4。字符与字符串 例题: 下列各种数制的数中最小的数是: A.(101001)2 B.(101001)BCD C.(52)8 D.(233)H 字符编码 用一定位数的二进制数“0”和“1”进行编码给出。 常用的字符编码ASCII码。 ASCII (American Standard Code for Information Interchange) 字符编码 中文编码 汉字输入码:为便于汉字进行输入时的编码,将汉字代码化。 汉字机内码:用于汉字信息的存储、交换、检索等操作的机内代码。一般用两个字节表示。 汉字字型码:汉字输出时的编码。用点阵表示。 中文编码 数值数据 定点数 浮点数 十进制数串 数值数据_定点数的表示方法 定点表示:约定机器中所有数据的小数点位置是固定不变的。由于约定在固定的位置,小数点就不再使用记号“.”来表示。通常将数据表示成纯小数或纯整数。 定点数x=x0x1x2…xn 在定点机中表示如下(x0为符号位,0代表正号,1代表负号): 纯小数的表示范围为(x0x1x2…xn 各位均为0时最小;各位均为1时最大) 0≤|x|≤1-2-n 纯整数的表示范围为 0≤|x|≤2n-1 数值数据—原码表示法 定点小数X表示: Ns. N1 N2 … Nn 定义: [ X ] 原 = 定点整数X表示:Ns N1 N2 … Nn 定义: [ X ] 原 = 数值数据—原码表示法 实例:X1 = 0.10110 -0.10110 0.0000 [ X ] 原= 0.10110 1.10110 0.0000 1.0000 实例:X1 = 10110 -10110 0000 [ X ] 原= 010110 110110 00000 10000 数值数据—原码表示法 性质: 原码为符号位加上数的绝对值,0正1负 原码零有两个编码,+0和 -0编码不同 原码难以用于加减运算,但乘除方便 N+1位二进制原码所表示的范围为: 小数:MAX=1-2-n ,MIN=﹣( 1-2-n ) 整数:MAX= 2n-1, MIN=﹣( 2n-1) 数值数据—原码表示法 原码的优点是:简单易懂。 缺点是:难以用于加减运算。原因是:如果是异号相加,则要进行减法运算。首先要比较绝对值的大小,然后大数减小数,最后确定符号。 为了便于加减运算,采用了补码表示。 数值数据—补码表示法 补码是在“模”和“同余”的概念下导出的。 “模”是指一个计量系统的计量范围,即产生“溢出”的量。 定义: 任意一个X的补码为[X]补,可以用该数加上其模M来表示。 [X]补=X+M 数值数据—补码表示法 定点小数表示: Ns. N1 N2 … Nn 定义: [ X ] 补 = (MOD 2) 定点整数表示:Ns N1 N2 … Nn 定义: [ X ] 补 = (MOD 2n+1) 数值数据—补码表示法 实例:X