lpt算法c语言程序,LPT算法的性能(近似).ppt

LPT算法的性能(近似).ppt

Claim:若G无HC,则因为H是完全图,存在HC。H的最小HC至少有一条边不是E的,其长为kn 正则图是每个顶点都有相同数目的邻居的图,即每个顶点的度相同。若每个顶点的度均为 ,称为 -正则图。 如何证明一个问题的绝对近似算法是不存在的?否定结果可避免做无用功! 注意:我们均默认近似算法是多项式时间的 如何证明一个问题的绝对近似算法是不存在的? 注意:f(σ)和OPT(I)等均为表示利润的整数, f(σ)= OPT(I) 意味着近似算法A找到了最优解,也就是背包问题多项式时间可解。 这里的例子说明在纯组合问题上,依然可用扩放性质 顶点集C被称为无向图 G=(V,E) 的团,如果C是顶点集V的子集(C?V),而且任意两个C中的顶点都有边连接。另一种等价的说法是,由C诱导的子图是完全图 (有时也用“团”来指这样的子图)。 极大团是指增加任一顶点都不再符合团定义的团,也就是说,极大团不能被任何一个更大的团所包含。 最大团是一个图中顶点数最多的团。图G的团数(clique number)ω(G) 是指G中最大团的顶点数。图G的边团覆盖数(edge clique cover number)是指覆盖G中所有的边所需要的最少的团的数目。图G的二分维数(bipartite dimension)是指覆盖G中所有边所需要的最少的二分团的数目,其中二分团(biclique)就是完全二分子图 。而分团覆盖问题 (Clique cover problem)所关心的是用最少的团去覆盖G中所有的顶点。 独立集(independent set)是刚好和团相反的概念,因为图G中的团和图G的补图中的独立集是一一对应的。 Claim直接给出了最优解之间的scaling性质:OPT(GK+1)=(k+1)OPT(G) A(GK+1)= β, A(G)= β/(k+1)=|C|, A(GK+1)= β=(k+1)|C| 若RA(I) ≤(1+?),则称A是(1+?)-近似算法,1-近似算法产生最优解 注意:绝对性能比与具体实例I无关,故表达比时无须用I RA=inf{r≥1:对于所有的实例I,RA(I) ≤r} RLPT是绝对性能比。即A(I)/OPT(I) ≤4/3-1/3m 证明留为作业 渐近性能比=inf{r≥1:存在n?Z+,对所有满足OPT(I) ≥n的实例I,RA(I) ≤r} 亦可定义为:渐近性能比=inf{r≥1:存在n?Z+,对所有满足I≥n的实例I,RA(I) ≤r} RFFD为3/2:1/2,1/3,/1/3,1/3,1/4,1/4 连通的无向图G有欧拉路径的充要条件是:G中奇顶点(连接的边数量为奇数的顶点)的数目等于0或者2, 奇数点是起点和终点。 连通的无向图G是欧拉环(存在欧拉回路)的充要条件是:G中每个顶点的度都是偶数 因为某顶点可能通过多次,故欧拉环的顶点序列长度>n。而哈密尔顿圈的顶点序列长度为n,因此,可以通过去掉重复顶点的方式得到哈密尔顿圈。因为去掉的边长度>=0,所以HC的长度小于其ET的长度,这点由三角不等式保证。 连通的无向图G有欧拉路径的充要条件是:G中奇顶点(连接的边数量为奇数的顶点)的数目等于0或者2, 奇数点是起点和终点。 连通的无向图G是欧拉环(存在欧拉回路)的充要条件是:G中每个顶点的度都是偶数 连通的无向图G有欧拉路径的充要条件是:G中奇顶点(连接的边数量为奇数的顶点)的数目等于0或者2, 奇数点是起点和终点。 连通的无向图G是欧拉环(存在欧拉回路)的充要条件是:G中每个顶点的度都是偶数 连通的无向图G有欧拉路径的充要条件是:G中奇顶点(连接的边数量为奇数的顶点)的数目等于0或者2, 奇数点是起点和终点。 连通的无向图G是欧拉环(存在欧拉回路)的充要条件是:G中每个顶点的度都是偶数 § 1.3.4 相对近似之否定结果 绝对近似之否定:很多问题找不到绝对近似算法 相对近似之否定:有些问题的有界性能比近似算法不存在 假定OPT(I)>0 两类近似算法之间的近似性能(相对误差):A是一个f(n)-近似算法当且仅当对每个size为n的输入实例I,有: BP的一个近似算法A满足:|A(I)-OPT(I)|≤O( lg2OPT(I) ) 蕴含着渐近性能比为1。 § 1.4 其他 近似方案(Approximation Scheme) 一个优化问题Π的近似方案是一个算法A,它以实例I和误差界ε作为输入,且有性能保证: RA( I, ε)≤ 1+ε。 对于最小化问题,ε是相对误差。实际上,算法A对应一个算法族{Aε:ε>0}使得 多项式近似方案(PAS: Polynomial Approximation Scheme) 是一近似方案{Aε},对任一确定的ε,每个算法均以其size[I]的多项式时

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值