本篇文章帮大家学习Spark单词统计示例,包含了Spark单词统计示例使用方法、操作技巧、实例演示和注意事项,有一定的学习价值,大家可以用来参考。
在Spark字数统计示例中,将找出指定文件中存在的每个单词的出现频率。在这里,我们使用Scala语言来执行Spark操作。
执行Spark字数计算示例的步骤
在此示例中,查找并显示每个单词的出现次数。在本地计算机中创建一个文本文件并在其中写入一些文本。
$ nano sparkdata.txt
检查sparkdata.txt文件中写入的文本。
$ cat sparkdata.txt
在HDFS中创建一个目录,保存文本文件。
$ hdfs dfs -mkdir /spark
将HDD上的sparkdata.txt 文件上传到特定目录中。
$ hdfs dfs -put /home/yiibai/sparkdata.txt /spark
现在,按照以下命令在Scala模式下打开spark。
$ spark-shell
使用以下命令创建一个RDD。
scala> val data=sc.textFile("sparkdata.txt")
在这里,传递包含数据的任何文件名。现在,可以使用以下命令读取生成的结果。
scala> data.collect;
在这里,使用以下命令以单个单词的形式拆分现有数据。
scala> val splitdata = data.flatMap(line => line.split(" "));
现在,可以使用以下命令读取生成的结果。
scala> splitdata.collect;
接下来,执行映射操作。
scala> val mapdata = splitdata.map(word => (word,1));
在这里,为每个单词分配值1。可以使用以下命令读取生成的结果。
scala> mapdata.collect;
现在,执行reduce操作 -
scala> val reducedata = mapdata.reduceByKey(_+_);
在这里,我汇总了生成的数据。使用以下命令读取生成的结果。
scala> reducedata.collect;