c
b
a
θ
高中数学知识背景下对向量叉乘运算的探
讨
在高中数学的学习中,同学们接触到向量的概念,并了解其性质、线性运算、坐标表
示、数量积以及在实际问题中的应用。在此基础上,可进一步深化,引入向量的叉乘运算,
能够提升对向量的理解,方便问题的解决。
1.
叉乘的定义
【
1
】
要确定一个向量,需要知道它的模和方向。
如图
1
,对于给定的向量
a
和
b
,规定向量
b
a
c
,满足:
(
1
)模:
b
a
b
a
c
,
sin
(
2
)方向:向量
c
的方向垂直于向量
a
和
b
(向量
a
和
b
构成的平面)
,
且符合
右手定则
:
用右手的食指表示向量
a
的方向,
然后手指朝着
手心的方向摆动角度
)
0
(
到向量
b
的
方向,大拇指所指的方向就是向量
c
的方向。
这里的
也就是
b
a
,
。
这样的运算就叫向量的
叉乘
,又叫
外积
、
向量积
。应特别注意的是,不同于向量的数
量积,向量的叉乘的结果仍是一个向量。
给定叉乘的定义后,就可以利用高中数学知识推导出一系列结论。
2.
叉乘的性质
(
1
)显然有
0
a
a
(
2
)反交换律:和其他运算不同,向量的叉乘满足反交换律,即
a
b
b
a
,这是
因为右手定则中手指一定是从乘号前的向量摆动到乘号后的向量,
如果将二者顺序交换,
则
一定要将手倒过来才能满足
0
,也就使得积向量反向。
(
3
)易得对数乘的结合律,即
a
b
)
(
)
(
b
a
b
a
(
4
)可以证明分配律:
c
b
c
a
c
b
a
)
(
或
c
a
b
a
c
b
a
)
(
3.
叉乘的几何意义
如图
2
,在平面上取点
,
,
b
a
OB
OA
O
,作
b
a
b
a
b
a
,
sin
,由三角形面积
公式
sin
2
1
ab
S
可知
b
a
表示以
OB
OA
,
为相邻两边的三角形的面积的两倍,也就是
图
1