oracle数据库生成代码,ORACLE数据库的统计数据及其生成方式_oracle

oracle数据库的PL/SQL语句执行的优化器,有基于代价的优化器(CBO)和基于规则的优化器(RBO)。

RBO的优化方式,依赖于一套严格的语法规则,只要按照规则写出的语句,不管数据表和索引的内容是否发生变化,不会影响PL/SQL语句的"执行计划"。

CBO自ORACLE 7版被引入,ORACLE自7版以来采用的许多新技术都是只基于CBO的,如星型连接排列查询,哈希连接查询,反向索引,索引表,分区表和并行查询等。CBO计算各种可能"执行计划"的"代价",即cost,从中选用cost最低的方案,作为实际运行方案。各"执行计划"的cost的计算根据,依赖于数据表中数据的统计分布,ORACLE数据库本身对该统计分布是不清楚的,须要分析表和相关的索引,才能搜集到CBO所需的数据。

CBO是ORACLE推荐使用的优化方式,要想使用好CBO,使SQL语句发挥最大效能,必须保证统计数据的及时性。

统计信息的生成可以有完全计算法和抽样估算法。SQL例句如下:

完全计算法: analyze table abc compute statistics;

抽样估算法(抽样20%): analyze table abc estimate statistics sample 20 percent;

对表作完全计算所花的时间相当于做全表扫描,抽样估算法由于采用抽样,比完全计算法的生成统计速度要快,如果不是要求要有精确数据的话,尽量采用抽样分析法。建议对表分析采用抽样估算,对索引分析可以采用完全计算。

我们可以采用以下两种方法,对数据库的表和索引及簇表定期分析生成统计信息,保证应用的正常性能。

1. 在系统设置定时任务,执行分析脚本。

在数据库服务器端,我们以UNIX用户oracle,运行脚本analyze,在analyze中,我们生成待执行sql脚本,并运行。(假设我们要分析scott用户下的所有表和索引)

Analyze脚本内容如下:

sqlplus scott/tiger << EOF

set pagesize 5000

set heading off

SPOOL ANALYTAB.SQL

SELECT 'ANALYZE TABLE SCOTT.'||TABLE_NAME||' ESTIMATE STATISTICS SAMPLE 20 PERCENT ;' FROM USER_TABLES;

SPOOL OFF

SPOOL ANALYIND.SQL

SELECT 'ANALYZE TABLE SCOTT.'||TABLE_NAME||' ESTIMATE STATISTICS SAMPLE 20 PERCENT FOR ALL INDEXES;' FROM USER_TABLES;

SPOOL OFF

SPOOL ANALYZE.LOG

@ANALYTAB.SQL

@ANALYIND.SQL

SPOOL OFF

EXIT

在UNIX平台上crontab加入,以上文件,设置为每个月或合适的时间段运行。

2. 利用ORACLE提供的程序包(PACKAGE)对相关的数据库对象进行分析。

有以下的程序包可以对表,索引,簇表进行分析。

包中的存储过程的相关参数解释如下:

TYPE可以是:TABLE,INDEX,CLUSTER中其一。

SCHEMA为:TABLE,INDEX,CLUSTER的所有者,NULL为当前用户。

NAME为:相关对象的名称。

METHOD是:ESTIMATE,COMPUTE,DELETE中其一,当选用ESTIMATE,

下面两项,ESTIMATE_ROWS和ESTIMATE_PERCENT不能同

时为空值。

ESTIMATE_ROWS是:估算的抽样行数。

ESTIMATE_PERCENT是:估算的抽样百分比。

METHOD_OPT是:有以下选项,

FOR TABLE /*只统计表*/

[FOR ALL [INDEXED] COLUMNS] [SIZE N] /*只统计有索引的表列*/

FOR ALL INDEXES /*只分析统计相关索引*/

PARTNAME是:指定要分析的分区名称。

1)

DBMS_DDL.ANALYZE_OBJECT(

TYPE VARCHAR2,

SCHEMA VARCHAR2,

NAME VARCHAR2,

METHOD VARCHAR2,

ESTIMATE_ROWS NUMBER DEFAULT NULL,

ESTIMATE_PERCENT NUMBER DEFAULT NULL,

METHOD_OPT VARCHAR2 DEFAULT NULL,

PARTNAME VARCHAR2 DEFAULT NULL ) ;

该存储过程可对特定的表,索引和簇表进行分析。

例如,对SCOTT用户的EMP表,进行50%的抽样分析,参数如下:

DBMS_DDL.ANALYZE_OBJECT('TABLE', 'SCOTT', 'EMP', 'ESTIMATE', NULL,50);

2)

DBMS_UTILITY.ANALYZE_SCHEMA (

SCHEMA VARCHAR2,

METHOD VARCHAR2,

ESTIMATE_ROWS NUMBER DEFAULT NULL,

ESTIMATE_PERCENT NUMBER DEFAULT NULL,

METHOD_OPT VARCHAR2 DEFAULT NULL ) ;

DBMS_UTILITY.ANALYZE_DATABASE (

METHOD VARCHAR2,

ESTIMATE_ROWS NUMBER DEFAULT NULL,

ESTIMATE_PERCENT NUMBER DEFAULT NULL,

METHOD_OPT VARCHAR2 DEFAULT NULL ) ;

其中,ANALYZE_SCHEMA用于对某个用户拥有的所有TABLE,INDEX和CLUSTER的分析统计。

ANALYZE_DATABASE用于对整个数据库进行分析统计。

3) DBMS_STATS是在ORACLE8I中新增的程序包,它使统计数据的生成和处理更加灵活方便,并且可以并行方式生成统计数据。在程序包中的以下过程分别分析统计TABLE,INDEX,SCHEMA,DATABASE级别的信息。

DBMS_STATS.GATHER_TABLE_STATS

DBMS_STATS.GATHER_INDEX_STATS

DBMS_STATS.GATHER_SCHEMA_STATS

DBMS_STATS.GATHER_DATABASE_STATS

在这里,我们以数据库JOB的方式,定时对数据库中SCOTT模式下所有的表和索引进行分析:

在SQL*PLUS下运行:

VARIABLE jobno number;

BEGIN

DBMS_JOBS.SUBMIT ( :jobno ,

' dbms_utility.analyze_schema ( "scott", "estimate", NULL, 20) ; ',

sysdate, 'sysdate+30');

commit;

end;

/

Statement processed.

Print jobno

JOBNO

-------------

16

以上作业,每隔一个月用DBMS_UTILITY.ANALYZE_SCHEMA对用户SCOTT的所有表,簇表和索引作统计分析

欢迎大家阅读《ORACLE数据库的统计数据及其生成方式_oracle》,跪求各位点评,若觉得好的话请收藏本文,by 搞代码

e7ce419cf2d6ad34d01da2ceb8829eed.png

微信 赏一包辣条吧~

023a57327877fb4402bcc76911ec18ea.png

支付宝 赏一听可乐吧~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值