东莞理工学院(本科)试卷(A 卷)(答案)
2005 -2006 学年第一学期
开课单位: 数学教研室 ,考试形式:闭卷,允许带 入场
科目:_高等数学1 _班级: 姓名: 学号:
一.填空题(每小题3分,共15分)
1.极限=
→
x
x x 1sin
lim 2
π
π
2
,=→x
x x 1sin
lim 0
0,=∞
→x
x x 1sin
lim 1。
2.曲线cos sin x t y t
=??
=?在4
t π
=
对应点处的切线方程为x y =。
3.设)(x f 的一个原函数为x ln ,则=')(x f 2
1x
-
。
4.函数)(x f 在[,]a b 上连续,是()f x 可导的 必要 条件 ;是()f x 可积的 充分 条件。 5.曲线3
3
2x t y t
?=?=?介于10≤≤t 之间的弧长为5。
二.选择题(每小题3分,共15分)
1.极限21lim (1)
x
x x
→∞
-
等于 ( D )
A.2
e B.
e 2
1 C.e
2 D.2
-e
2.当0→x 时,0
tan d x
t t t ?是3
x 的( D ).
A.高阶无穷小 B.等价无穷小 C.低阶无穷小 D.同阶无穷小 3.曲线x
xe y =在区间( A )上是凸的。
A. ()2,-∞- B.()∞+-,2 C.()2,∞- D.()∞+,2