在微分方程中,线性方程理论占有非常重要的地位,这不仅因为线性微分方程最简单、其一般理论也被研究的十分清楚,而且微分方程是研究非线性微分方程的基础。[1]
在实际物理问题的数学模型中,线性微分方程非常常见,例如质量-弹簧-阻尼振动系统的运动学方程,就为二阶线性微分方程(组),如式
该“线性”体现在微分方程中,函数(这里
在 微分方程(2)-一阶常微分方程的解法 中,已经详细介绍了一阶线性微分方程的解法,为了一般性,需要将其推广到更高阶的线性微分方程,本文先给出线性常微分方程解的结构,按各种概念一步一步深入讲解,请按照本文顺序阅读,不要跳读。
[注]:下面的几个定理证明过程较为复杂,为节省篇幅,这里给出了部分关键定理的证明。对于微分方程解的存在唯一性定理等更细节的具体证明步骤请参考西安交通大学周义仓的《常微分方程及其应用》[1]或《常微分方程定性与稳定性方法》[2]。
线性微分方程 Linear Differential Equations
对于自变量
其中,系数
如果有
另外,如果所有的系数
这里针对的都是常系数线性微分方程,如不特殊说明,则后面的线性微分方程指的均为常系数线性微分方程。
为了描述线性微分方程解的结构,先要引入一个很重要的概念——线性无关解。
线性无关解 Linearly Independent Solutions
如果在某一区间
则,这组函数
例子:
集合{
反之,如果只有当
为了建立线性相关和线性无关的判别法则,再引进Wronskian 行列式的概念。
朗斯基行列式 The Wronskian
朗斯基行列式指的是:在区间

文章探讨了线性微分方程的重要性及其在物理问题中的应用,如振动系统的微分方程。介绍了线性微分方程的概念、线性无关解、朗斯基行列式和齐次、非齐次线性微分方程的解法。通过相关定理和推论,阐述了解的结构和性质,并引用专业教材作为参考。
最低0.47元/天 解锁文章
979

被折叠的 条评论
为什么被折叠?



