微分方程_微分方程(3)-线性微分方程解的结构

文章探讨了线性微分方程的重要性及其在物理问题中的应用,如振动系统的微分方程。介绍了线性微分方程的概念、线性无关解、朗斯基行列式和齐次、非齐次线性微分方程的解法。通过相关定理和推论,阐述了解的结构和性质,并引用专业教材作为参考。
摘要由CSDN通过智能技术生成

d9712416aecbabe374d7c0dbd34331f7.png

在微分方程中,线性方程理论占有非常重要的地位,这不仅因为线性微分方程最简单、其一般理论也被研究的十分清楚,而且微分方程是研究非线性微分方程的基础。[1]

在实际物理问题的数学模型中,线性微分方程非常常见,例如质量-弹簧-阻尼振动系统的运动学方程,就为二阶线性微分方程(组),如式

所示。

该“线性”体现在微分方程中,函数(这里

为时间
的函数)及其
各阶导数的幂次为

在 微分方程(2)-一阶常微分方程的解法 中,已经详细介绍了一阶线性微分方程的解法,为了一般性,需要将其推广到更高阶的线性微分方程,本文先给出线性常微分方程解的结构,按各种概念一步一步深入讲解,请按照本文顺序阅读,不要跳读。

[]:下面的几个定理证明过程较为复杂,为节省篇幅,这里给出了部分关键定理的证明。对于微分方程解的存在唯一性定理等更细节的具体证明步骤请参考西安交通大学周义仓的《常微分方程及其应用》[1]或《常微分方程定性与稳定性方法》[2]

线性微分方程 Linear Differential Equations

对于自变量

和未知函数
,其
阶线性微分方程的通式可以写为:

其中,系数

都只是关于
的函数,与函数
的导数无关。

如果有

,则上式为
齐次线性微分方程(注意与“齐次方程”区分,参见: 微分方程(1)-基本概念及分类);否则,则是 非齐次线性微分方程

另外,如果所有的系数

均为常数,则上式为
常系数线性微分方程(注意与“常微分方程”区分,参见: 微分方程(1)-基本概念及分类 );如果有一个或多个系数不是常数,则上式为 变系数线性微分方程

这里针对的都是常系数线性微分方程,如不特殊说明,则后面的线性微分方程指的均为常系数线性微分方程

为了描述线性微分方程解的结构,先要引入一个很重要的概念——线性无关解

线性无关解 Linearly Independent Solutions

如果在某一区间

,存在一组
不全为零的常数
使得一组函数
满足:

则,这组函数

在区间
线性相关

例子:

集合{

}在区间
上线性相关,因为存在一组常数
,
,
,
,它们不全为零,且满足:

反之,如果只有当

时才满足,则函数集合线性无关

为了建立线性相关和线性无关的判别法则,再引进Wronskian 行列式的概念。

朗斯基行列式 The Wronskian

朗斯基行列式指的是:在区间

上有一组函数{
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值