复习方法:
1 2 3 针对精简的PPT复习(涵盖了全部的教学和考试内容) 作业(认真把做过的作业温习一遍,做到真正弄懂)
结合本复习大纲有针对性的复习,特别是大纲中文字加粗部分的内容。
复习大纲:
1 第一章
1.1 与集合相关的概念和特殊集合:集合的定义、集合的表示、属于和不属于、子集、真子集、包含和真包含、幂集、空集、全集、基数、有限集、无限集等;
1.2 与集合运算相关的概念和定理:集合的交、并、差、补和对称差等五种运算的定义及相关定理。
1.3 代表性习题:7, 13, 24, 29
第二章
2.1 容斥原理和鸽笼原理的基本概念及正确使用。 2.2 代表性习题:18, 19
第三章
3.1 命题的概念、表示、分类、5种基本联接词的定义与使用、命题的正确符号化。 3.2 命题变元、命题公式的概念及公式的正确翻译。 3.3 等价关系及蕴含关系的概念、常用的等价关系以及蕴涵关系、等价关系和蕴涵关系之间的关系。
3.4 文字、短语、子句、析取范式、合取范式、极小项、极大项、主析取范式、主合取范式的概念。
3.5 求范式、主范式的方法、公式类型与主范式之间的关系, 主析取和主合取范式之间的转换。
3.6 命题演算的推理方法——真值表技术、直接证明方法(规则P、规则T、规则CP),间接证明方法(反证法)。(PPT上第五章) 3.7 代表性习题:3, 7, 11, 18,
第四章
4.1 谓词、量词、个体域和个体的概念;
4.2 原子谓词公式的概念,谓词演算的合式公式的概念,谓词公式的翻译;
4.3 自由变元,约束变元,辖域的概念,约束变元的改名规则和自由变元的代入规则; 4.4 谓词公式分为三类:逻辑有效公式、矛盾公式和可满足公式;
4.5 谓词演算的永真公式、等价关系的概念,常用的谓词演算的等价关系;
4.6 谓词逻辑的推理理论——直接证明方法和间接证明方法,用于消去量词的全称特指规则和存在特指规则,用于添加量词的全称推广规则和存在推广规则及应用。(PPT上第五章)
4.7 代表性习题:7, 10, 16, 19 2
4 5 第六章
5.1 序偶和笛卡儿积的概念
5.2 二元关系的概念和表示(特别是关系图和关系矩阵) 5.3 关系的交、并、补、差运算、复合运算和逆运算
5.4 关系性质的定义、关系性质的判定、关系性质的证明; 5.5 关系的自反、对称、和传递闭包的概念及计算。 5.6 代表性习题:3, 17,19,21
第七章
6.1 等价关系的概念及证明、等价类和商集的计算; 6.2 集合划分的定义、求给定集合的划分; 6.3 等价关系与集合划分的关系;
6.4 偏序关系、拟序关系、全序关系和良序关系的定义,它们之间的异同; 6.5 哈斯图的画法;
6.6 八个特殊元的定义和基本性质。 6.7 代表性习题:5, 11,14,18
第八章
7.1 函数的概念。注意函数与关系的区别和联系; 7.2 单射、满射和双射函数的概念,数学描述形式; 7.3 函数的复合运算,逆运算及运算性质。 7.4 代表性习题:4,8
第九章
8.1 图的概念:图的定义、图的表示、图的操作、邻接点与邻接边、图的分类等。 8.2 图的基本性质:结点的度数、图的基本定理(握手定理)、完全图、补图、子图、真子图、生成子图、导出子图等。
8.3 通路与回路:通路与回路、简单(基本)通路与简单(基本)回路、通路与回路长度、结点间的短程线和距离、可达与可达性矩阵。
8.4 图的连通性:无向连通图与连通分支、强(单向、弱)连通图与强(单向、弱)分图、
8.5 利用邻接矩阵和可达性矩阵判断图的通路(回路)条数以及连通性等(定理9.3.1和定理9.3.4)。
8.6 代表性习题:5,24, 26,27
第十章
9.1 树的概念: 树、森林、根树、根、叶、分支点、生成树、最小生成树等。 9.2 树的基本性质:m = n-1等。
9.3 与根树相关的概念:有向树、根树、根、叶、内点、分支点、层数、高、有序树、祖先与后代、父亲与儿子、k元树、k元完全树、k元有序树、k元有序完全树、子树、根树的遍历、最优树。
9.4 树的算法: 破圈法、避圈法、广度优先搜索算法、Kruskal算法、Prim算法、哈夫曼算法、二元树的先(中、后)根次序遍历算法。 9.5 代表性习题:10,11,17,19 6
9 10 第十一章
10.1 基本概念:欧拉通路、欧拉回路、欧拉图、哈密顿通路、哈密顿回路、哈密顿图、偶图、匹配、平面图等;
10.2 判定方法:比如欧拉图和偶图都有简单的方法;
10.2.1 定理11.2.1,推论11.2.1,推论11.2.2
10.2.2 定理11.3.1,推论11.3.1,定理11.3.2,定理11.3.3 10.2.3 定理11.4.1
10.2.4 定理11.5.3, 推论11.5.3
10.3 在哈密顿图、平面图、偶图中都分别有定理仅是必要条件,注意,此必要条件正方面的叙述无法用来判断一个图是否是哈密顿图、平面图,此时该定理是用处不大,但必要条件的等价逆叙述却非常的重要,用此逆叙述可以判断一个图不是哈密尔图、是非平面图等; 10.4 代表性习题:1, 8, 9,16,21,22
11 第十二章
11.1 代数运算的定义、代数运算的封闭性、代数系统的概念以及子代数的概念。
11.2 二元运算律,具体包含结合律、交换律、吸收律、分配律、幂等律以及可消去律。 11.3 代数系统中的特殊元素,有幺元(单位元)、可逆元、零元、可消去元、幂等元,以及特殊元素的一些基本性质。 11.4 代表性习题:3, 4 12 第十三章
12.1 半群与含幺半群的定义、元素幂的定义以及性质、循环半群与循环含幺半群的定义与性质。
12.2 群的定义与性质、元素的周期与性质、子群的定义、子群的判别定理 12.3 交换群和循环群的定义及性质
12.4 陪集的概念及性质、拉格朗日定理及其推论。 12.5 代表性习题:4, 16
《离散数学》期末复习
内容:第一章~第七章 题型:
一、选择题(20%,每题2分) 二.填空题(20%,每题2分)
三、计算题(20%,每题5分)
四、证明题(20%,每题5分)
五、判断题(20%,每题2分)
第1章 数学语言与证明方法
1.1 常用的数学符号
1. 计算常用的数学符号式子 1.2 集合及其表示法
1. 用列举法和描述法表示集合
2. 判断元素与集合的关系(属于和不属于) 3. 判断集合之间的包含与相等关系,空集(E),全集() 4. 计算集合的幂集
5. 求集合的运算:并、交、相对补、对称差、绝对补
6. 用文氏图表示集合的运算 7. 证明集合包含或相等
方法一: 根据定义, 通过逻辑等值演算证明
方法二: 利用已知集合等式或包含式, 通过集合演算证明
1.3 证明方法概述
1、用如下各式方法对命题进行证明。 直接证明法:AB为真
间接证明法:“AB为真” “ ¬B ¬A为真” 归谬法(反证法): A¬B0为真
穷举法: A1B, A2B,…, AkB 均为真
构造证明法:在A为真的条件下, 构造出具有这种性质的客体B 空证明法:“A恒为假” “AB为真” 平凡证明法:“B恒为真” “AB为真” 数学归纳法: 第2章 命题逻辑
2.1 命题逻辑基本概念
1、判断句子是否为命题、将命题符号化、求命题的真值(0或1)。
命题的定义和联结词(¬, , , , )
2、判断命题公式的类型
赋值或解释.成真赋值,成假赋值;重言式(永真式)、矛盾式(永假式)、可满足式:。 2.2 命题逻辑等值演算
1、用真值表判断两个命题公式是否等值
2、用等值演算证明两个命题公式是否等值
3、证明联结词集合是否为联结词完备集 2.3 范式
1、求命题公式的析取范式与合取范式
2、求命题公式的主析取范式与主合取范式(两种主范式的转换)
3、应用主析取范式分析和解决实际问题 2.4 命题逻辑推理理论
1、用直接法、附加前提、归谬法、归结证明法等推理规则证明推理有效 第3章 一阶逻辑
3.1 一阶逻辑基本概念
1、用谓词公式符号命题(正确使用量词)
2、求谓词公式的真值、判断谓词公式的类型 3.2 一阶逻辑等值演算
1、证明谓词公式的等值式
2、求谓词公式的前束范式 第4章 关系
4.1 关系的定义及其表示
1、计算有序对、笛卡儿积
2、计算给定关系的集合
3、用关系图和关系矩阵表示关系 4.2 关系的运算
1、计算关系的定义域、关系的值域
2、计算关系的逆关系、复合关系和幂关系
3、证明关系运算满足的式子 4.3 关系的性质
1、判断关系是否为自反、反自反、对称、反对称、传递的
2、判断关系运算与性质的关系
3、计算关系自反闭包、对称闭包和传递闭包 4.4 等价关系与偏序关系
1、判断关系是否为等价关系
2、计算等价关系的等价类和商集
3、计算集合的划分
4、判断关系是否为偏序关系
5、画出偏序集的哈期图
6、求偏序集的最大元、最小元、极小元、极大元、上界、下界、上确界、下确界
7、求偏序集的拓扑排序 第5章 函数
1. 判断关系是否为函数 2. 求函数的像和完全原像
3. 判断函数是否为满射、单射、双射 4. 构建集合之间的双射函数 5. 求复合函数
6. 判断函数的满射、单射、双射的性质与函数复合运算之间的关系 7. 判断函数的反函数是否存在,若存在求反函数 第6章 图
1. 指出无向图的阶数、边数、各顶点的度数、最大度、最小度
2. 指出有向图的阶数、边数、各顶点的出度和入度、最大出度、最大入度、最小出度最小入出度
3. 根据握手定理顶点数、边数等
4. 指出图的平行边、环、弧立点、悬挂顶点和悬挂边 5. 判断给定的度数列能否构成无向图
6. 判断图是否为简单图、完全图、正则图、圈图、轮图、方体图 7. 求给定图的补图、生成子图、导出子图 8. 判断两个图是否同构 6.2 图的连通性
1. 求图中给定顶点通路、回路的距离
2. 计算无向图的连通度、点割集、割点、边割集、割边 3. 判断有向图的类型:强连通图、单向连通图、弱连通图 6.3 图的矩阵表示
1. 计算无向图的关联矩阵 2. 计算有向无环图的关联矩阵 3. 计算有向图的邻接矩阵 4. 计算有向图的可达矩阵
5. 计算图的给定长度的通路数、回路数 6.4 几种特殊的图
1、判断无向图是否为二部图、欧拉图、哈密顿图 第7章 树及其应用 7.1 无向树
1. 判断一个无向图是否为树
2. 计算无向树的树叶、树枝、顶点数、顶点度数之间的关系 3. 给定无向树的度数列,画出非同构的无向树 4. 求生成树对应的基本回路系统和基本割集系统 5. 求最小生成树 7.2 根树及其应用
1. 判断一个有向图是否为根树
2. 求根树的树根、树叶、内点、树高 3. 求最优树
4. 判断一个符号串集合是否为前缀码 5. 求最佳前缀码
6. 用三种方法遍历根树
离散数学复习重点:
1、 集合的运算以及运算律;
2、 关系的三种表示方法,以及他们之间的转化;
3、 常见关系的定义;
4、 哈斯图的画法,以及最大最小元、极大极小元、上下界,上下确界的求法;
5、 单射、满射以及双射的证明(尤其是在代数系统中);
6、 代数系统的概念以及代数系统的常用性质,能够证明具体的代数系统的运算律,找出单
位元,零元、以及逆元等;
7、 环和格只要记住不同的环和格满足的运算律就好;
8、 各种图和树的概念及相关的结论,比如:欧拉图的充要条件,哈密顿图的充分条件、必
要条件、充要条件等;
9、 图的矩阵计算;
10、 会画一些简单的树;
11、 五种联结词的真值表;
12、 一些要求记住的命题公式;
13、 命题公式的证明;
14、 命题公式的析取范式,合取范式,主析取范式和主合取范式的求法。
题型:填空题、证明题和解答题。
友情提醒:
1、周三下午一点半到三点半在逸夫楼519答疑。
2、概念、定理和公式请务必记住,可能会出填空题;
3、考试内容不会超出我们的重点;
请大家好好复习,争取一次性通过。
离散数学练习题目
一、选择题
1.设A={{1,2,3},{4,5},{6,7,8}},下列各式中____D______是错的。
A、A; B、{6,7,8}A; C、{{4,5}}A; D、{1,2,3}A 。
2.已知集合A={a,b,c},B={b,c,e},则 A⊕B=___C___________ A.{a,b} B={c} C={a,e} D=φ
3.下列语句中,不是命题的是____A_________ A.我说的这句话是真话; B. 理发师说“我说的这句话是真话”; C. 如果明天下雨,我就不去旅游; D. 有些煤是白的,所以这些煤不会燃烧;
4.下面___D______命题公式是重言式。
A.PQR ; B.(PR)(PQ) ;C.(PQ)(QR);
D、(P(QR))((PQ)(PR))。
5.公式(p∧q)∨(p∧~q)的主析取范式是____B_______ A.m1∨m2 B.m2∨m3 C.m0∨m2 D. m1∨m3
6.设L(x):x是演员,J(x):x是老师,A(x , y):x钦佩y,命题“所有演员都钦佩某些老师”符号化为___D______。
A、x(L(x)A(x,y)); B、x(L(x)y(J(y)A(x,y))) ; C、xy(L(x)J(y)A(x,y)); D、xy(L(x)J(y)A(x,y)) 。 7.关于谓词公式(x)(y)(P(x,y)∧Q(y,z))∧(x)p(x,y),下面的描述中错误的是__B_____ A.(x)的辖域是(y)(P(x,y)∧Q(y,z))
B.z是该谓词公式的约束变元
C.(x)的辖域是P(x,y) D.x是该谓词公式的约束变元 8. 设SAB,下列各式中____B___________是正确的。
A、domSB ; B、domSA; C、ranSA; D、domS ranS = S。 9.设集合X,则空关系X不具备的性质是____A________。
A、自反性; B、反自反性; C、对称性; D、传递性。
10. 集合A,R是A上的关系,如果R是等价关系,则R必须满足的条件是__D___ A. R是自反的、对称的 B. R是反自反的、对称的、传递的 C. R是自反的、对称的、不传递的 D.R是自反的,对称的、传递的 11.集合A={a,b,c,d},B={1,2,3},则下列关系中__ACD______是函数
A. R={(a,1),(b,2),(c,1),(d,2)} B. R={(a,1),(a,2),(c,1),(d,2)} C. R={(a,3),(b,2),(c,1)} D. R={(a,1),(b,1),(c,1),(d,1)} 已知集合 RA,且R={(1,2),(1,2),(2,1),(2,2),(2,3),(2,4), (3,4),(4,1)},则顶点2的入度和出度分别是___D_______ A.2,3 B.2,4 C.3,3 D.3,4 13.设完全图Kn有n个结点(n≥2),m条边,当下面条件__C____满足时,Kn中存在欧拉回路.
A.m为奇数 B.n为偶数 C.n为奇数 D.m为偶数 14.下面叙述正确的是____B______ A.二部图K3,3是欧拉图 B. 二部图是平面图
K3,3是哈密尔顿图
C. 二部图 K3,32
D. 二部图K3,3是既不是欧拉图也不哈密尔顿图
15.已知某平面图的顶点数是12,边数是14,则该平面图有__D___个面 A. 3 B.2 C.5 D.4 16.设G是n个结点、m条边和r个面的连通平面图,则m等于___A____。
A、n+r-2 ; B、n-r+2 ; C、n-r-2 ; D、n+r+2 。 17. 下面几种代数结构中,不是群的是___D____ A. B. C. D. (这里Z,Q,R,N分别表示整数集、有理数集、实数集、自然数集,+普通加法)
二、问答题