人工智能、机器学习、神经网络、深度学习、TensorFlow、图像处理必备书籍(附PDF百度盘下载链接)

AI人工智能 同时被 3 个专栏收录
19 篇文章 0 订阅
1 篇文章 0 订阅
2 篇文章 0 订阅

人工智能、机器学习、神经网络、深度学习、TensorFlow、图像处理必备书籍(附PDF百度盘下载链接)

在学习人工智能相关相关知识中往往不理解其中相关术语意义和知识原理的组成,下面书籍是阿拉灯神丁君在阅读了大量书籍后觉得很不错的一部分,特此分享出来,以供大家学习之便利。内容链接如有侵犯到您的权益,请联系删除。

学习资料持续更新,完整书籍链接请关注 公众号“AI人工智能客栈” 回复关键字 “人工智能书籍” 获取百度盘链接

在这里插入图片描述

1、机器学习 周志华.pdf

链接:https://pan.baidu.com/s/1P5Owh7YoZ6ncQz9dXanwCA 密码:wzst

2、推荐系统实践.pdf

3、《自然语言处理综论》.pdf

4、《计算机视觉:一种现代方法》.pdf

5、图解机器学习.pdf

6、《决策知识自动化》.pdf

7、《人工智能:一种现代的方法(第3版)》.pdf

8、Python数据分析与挖掘实战.pdf

9、机器学习导论.pdf

10、面向机器智能的TensorFlow实践 (智能系统与技术丛书)_.pdf

11、图像处理、分析与机器视觉(第三版).pdf

12、TensorFlow实战_黄文坚(完整).pdf

13、Tensorflow 实战Google深度学习框架.pdf

14、统计学习方法.pdf

作者李航,是国内机器学习领域的几个大家之一,曾在MSRA任高级研究员,现在华为诺亚方舟实验室。书中写了十个算法,每个算法的介绍都很干脆,直接上公式,是彻头彻尾的“干货书”。每章末尾的参考文献也方便了想深入理解算法的童鞋直接查到经典论文;本书可以与上面两本书互为辅助阅读。

15、数学之美.pdf

作者吴军大家都很熟悉。以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。

16、区块链新经济概论.pdf

最近也是在学习入门阶段,也就一个感觉“一如侯门深似海,从此节操是路人”,看的我是头晕眼花,公式,概念,金星星眼前飘过~~~…((/- -)/

以上电子书也基本都是高清版,本人对电子书的质量要求也是比较高的,影印版太垃圾了,更是伤银镜。

人工智能领域涵盖的知识非常的广:算法、深度学习、机器学习、自然语言处理、数据结构、Tensorflow、Python 、数据挖掘、搜索开发、神经网络、视觉度量、图像识别、语音识别、推荐系统、系统算法、图像算法、数据分析、概率编程、计算机数学、数据仓库、建模等关键词,基本涵盖了现阶段人工智能细分领域的人才结构。

  • 9
    点赞
  • 0
    评论
  • 25
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

<p style="font-size:16px;"> 本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。<br /> <br /> 基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。<br /> <br /> 本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类目标检测图像分割(语义分割实例分割全景分割)人脸识别图像描述图像检索图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br /> <br /> 通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br /> <br /> 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br /> <br /> 本课程分为上下两部分,其中上部包含课程的前五章(课程介绍深度学习基础图像分类目标检测图像分割),下部包含课程的后四章(人脸识别图像描述图像检索图像生成)。 </p> <div> <br /> </div> <p> <br /> </p> <p> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201902211157137641.jpg" alt="" /><img src="https://img-bss.csdn.net/201902211157578041.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158173579.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158498135.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159093293.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159209625.gif" alt="" /> </p> <p style="font-size:16px;"> <br /> </p>
相关推荐
本书也是一本介绍图像技术的教材,但它有不同的视点和方式。至少有两点值得指出: 首先,作者完全采用了一种问答的形式来组织和介绍相关内容。全书从头到尾共设计了472个问题(很多是由学生提出来的),有问有答,循序渐进,逐步将各种图像技术依次介绍。这种形式除能帮助课堂教学外,也很适合自学,因为每一段都解决了一个疑问,对自学者会很有吸引力。书中还有383个详细的示例,不仅方便读者学习,对讲授相关课程的教师也是一个很好的资源。 其次,作者对基本内容和高级内容进行了划分。但与许多教材中这两部分内容不相重合后者是前者的延伸不同,该书两部分内容密切相关后者对应前者的更深层次。从其安排来看,基本内容是主干,而高级内容(放在63个框内,且有161个配合示例,编号前均加B)则分布在书中与相关基本内容对应的位置。如果把基本内容看作一个主程序,那么这些高级内容部分就像子程序,随时可在需要处调用。 本书是一本篇幅较大的书,从结构上看,有7章共27节。全书共有编了号的图307个(其中10个为彩图)表格25个公式1892个。另外有一个约80篇参考文献的目录,以及可进行索引的近400个术语。全书译成中文约合100万字(也包括图片绘图表格公式等)。本书可作为已具有初步图像技术知识的相关专业高年级本科生和低年级研究生的专业基础课教材,也可供从事图像应用相关领域的科研技术人员参考。 译者基本忠实原书的结构和文字风格进行了翻译。为方便阅读,对书中问答中的问题按章节进行了编号。考虑到书中分散介绍了40多个具体算法,译文中归纳增加了一个算法列表。另外,对原书的索引,考虑中文的习惯进行了一些调整,并按中文次序进行了排列,希望能更好地服务于读者。 封面 -27 封底 -26 书名 -25 版权 -24 译者序 -19 前言 -18 目录 -16 第1章 导论 1 1.0.1 为什么要处理图像? 1 1.0.2 什么是一幅图像? 1 1.0.3 什么是一幅数字图像? 1 1.0.4 什么是一个光谱带? 1 1.0.5 为什么大多数图像处理算法都参照灰度图像进行,而实际中遇到的都是彩色图像? 2 1.0.6 一幅数字图像是如何形成的? 2 1.0.7 如果一个传感器对应物理世界中的一个小片,如何能让多个传感器对应场景中的同一个小片? 2 1.0.8 什么是图像中一个像素位置亮度的物理含义? 3 1.0.9 为什么图像常用512×512,256×256,128×128 等来表示? 4 1.0.10 需要多少个比特以存储一幅图像? 5 1.0.11 什么决定了一幅图像的质量? 5 1.0.12 什么会使得图像模糊? 5 1.0.13 图像分辨率是什么含义? 5 1.0.14 “良好对比度”是什么含义? 7 1.0.15 图像处理的目的是什么? 8 1.0.16 如何进行图像处理? 8 1.0.17 图像处理中使用非线性操作符吗? 9 1.0.18 什么是线性操作符? 9 1.0.19 如何来定义线性操作符? 9 1.0.20 一个成像装置的点扩散函数和一个线性操作符之间有什么联系? 9 1.0.21 一个线性操作符如何变换一幅图像? 9 1.0.22 点扩散函数的含义是什么? 10 B1.1 在连续空间中一个点源的正式定义 10 1.0.23 实际中如何描述一个线性操作符作用在一幅图像上的效果? 15 1.0.24 对一幅图像可使用多于一个线性操作符吗? 18 1.0.25 线性操作符使用的次序会导致结果的不同吗? 18 B1.2 因为矩阵运算次序是不能互换的,如果改变使用移不变线性操作符的次序会发生什么情况? 18 B1.3 什么是堆叠操作符? 24 1.0.26 对矩阵H结构上可分离性的假设意味着什么? 30 1.0.27 如何能将一个可分离变换写成矩阵的形式? 31 1.0.28 可分离性假设的含义是什么? 32 B1.4 可分离矩阵方程的正式推导 32 1.0.29 本章要点 34 1.0.30 式(1.108)在线性图像处理中的意义是什么? 34 1.0.31 这本书有些什么内容呢? 36 第2章 图像变换 37 2.0.1 本章概况 37 2.0.2 如何能定义一幅基本图像? 37 2.0.3 什么是两个矢量的外积? 37 2.0.4 如何可将一幅图像展开成矢量的外积? 37 2.0.5 如何选择矩阵hc和hr? 39 2.0.6 什么是酉矩阵? 39 2.0.7 酉矩阵的逆是什么样的? 39 2.0.8 如何能构建一个酉矩阵? 40 2.0.9 如何选择矩阵U和V以使表达g的比特数比f少? 40 2.0.10 什么是矩阵对角化? 40 2.0.11 可以对角
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值