试下这个公式:
y = p1+p2/x+p3/x^2;
y1:
均方差(RMSE): 0.148237057806381
残差平方和(SSE): 0.131845351842554
相关系数(R): 0.998746884380994
相关系数之平方(R^2): 0.997495339060742
修正R平方(Adj. R^2): 0.995825565101236
确定系数(DC): 0.997495339060742
卡方系数(Chi-Square): 0.00241726620795399
F统计(F-Statistic): 597.383456281541
参数 最佳估算
---------- -------------
p1 -172.819144624189
p2 154054.622356493
p3 -28949379.4148539
y2:
均方差(RMSE): 0.139532620516987
残差平方和(SSE): 0.116816113130025
相关系数(R): 0.998752607252572
相关系数之平方(R^2): 0.99750677049381
修正R平方(Adj. R^2): 0.995844617489683
确定系数(DC): 0.99750677049381
卡方系数(Chi-Square): 0.00190705443002997
F统计(F-Statistic): 600.129331056209
参数 最佳估算
---------- -------------
p1 -147.958624280663
p2 136753.84297785
p3 -25513098.2545355
y3:
均方差(RMSE): 0.190095756058907
残差平方和(SSE): 0.216818378829646
相关系数(R): 0.996537999964296
相关系数之平方(R^2): 0.99308798537284
修正R平方(Adj. R^2): 0.988479975621399
确定系数(DC): 0.993087985372839
卡方系数(Chi-Square): 0.00331102319001683
F统计(F-Statistic): 215.513429648136
参数 最佳估算
---------- -------------
p1 -82.8905413574658
p2 86698.7242038786
p3 -15613012.1262197
y4:
均方差(RMSE): 0.2536428100209
残差平方和(SSE): 0.386008050451791
相关系数(R): 0.994154324592387
相关系数之平方(R^2): 0.988342821105744
修正R平方(Adj. R^2): 0.980571368509574
确定系数(DC): 0.988342821105744
卡方系数(Chi-Square): 0.0055585966408787
F统计(F-Statistic): 127.176072808396
参数 最佳估算
---------- -------------
p1 -104.579497414454
p2 106007.336523938
p3 -19585424.7471433
y5:
均方差(RMSE): 0.119343878220054
残差平方和(SSE): 0.0854577676116185
相关系数(R): 0.998373593077017
相关系数之平方(R^2): 0.996749831353514
修正R平方(Adj. R^2): 0.994583052255856
确定系数(DC): 0.996749831353513
卡方系数(Chi-Square): 0.00118403546790259
F统计(F-Statistic): 460.01451300562
参数 最佳估算
---------- -------------
p1 -83.9721852933411
p2 90676.8768329402
p3 -16651036.736863
y6:
均方差(RMSE): 0.119343878220053
残差平方和(SSE): 0.0854577676116167
相关系数(R): 0.998373593077017
相关系数之平方(R^2): 0.996749831353514
修正R平方(Adj. R^2): 0.994583052255856
确定系数(DC): 0.996749831353514
卡方系数(Chi-Square): 0.00118403546775373
F统计(F-Statistic): 460.014512976232
参数 最佳估算
---------- -------------
p1 -83.9721852549159
p2 90676.8768009472
p3 -16651036.7302481
本文展示了使用MATLAB进行数据拟合的过程,包括使用公式y = p1+p2/x+p3/x^2进行拟合,并给出了不同情况下的参数估计。同时,详细列出了RMSE、SSE、R、R^2、Adj. R^2、DC、Chi-Square和F统计等评估指标,以评估模型的拟合优度。

被折叠的 条评论
为什么被折叠?



