六.机器学习的评价指标

1.概述

在评价模型的预测结果时,除了常用的准确率,还有精确率、召回率等。选择不同的评价指标,会极大的影响模型的性能。

2.基础概念

真正例(TP,True Positives):预测为正的正样本。
假正例(FP,False Positives):预测为正的负样本。
真负例(TN,True Negatives):预测为负的负样本。
假负例(FN,False Negatives):预测为负的正样本。
最常用的评价指标是准确率,即正确预测的样本占所有样本的比例:
A C C = T P + T N T P + F P + T N + F N ACC=\frac{TP+TN}{TP+FP+TN+FN} ACC=TP+FP+TN+FNTP+TN

3.灵敏度、特异度和ROC曲线

灵敏度(TPR,True Positive Rate)指所有正例中,正确预测为正例的样本比例:
T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP
特异度(FPR,False Positive Rate)指所有负例中,错误识别为正例的比例:
F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP
ROC曲线:
以FPR为x轴,TPR为y轴所做的曲线。TPR越大,FPR越小,表明模型越高效。也就是说,ROC曲线越靠近左上方,即ROC曲线下面积AUC(Aera Under Curve)越大,模型越好。

4.精确率、召回率和PR曲线

精确率P(Precision),预测正确的正例占所有预测为正例的比例:
P = T P T P + F P P=\frac{TP}{TP+FP} P=TP+FPTP
召回率R(Recall),预测正确的正例,占所有正例的比例。
R = T P T P + F N R=\frac{TP}{TP+FN} R=TP+FNTP
PR曲线:以R为x轴,以P为y轴所做的曲线。P、R越高,也就是说曲线越靠近右上角,模型效果越好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值