1.概述
在评价模型的预测结果时,除了常用的准确率,还有精确率、召回率等。选择不同的评价指标,会极大的影响模型的性能。
2.基础概念
真正例(TP,True Positives):预测为正的正样本。
假正例(FP,False Positives):预测为正的负样本。
真负例(TN,True Negatives):预测为负的负样本。
假负例(FN,False Negatives):预测为负的正样本。
最常用的评价指标是准确率,即正确预测的样本占所有样本的比例:
A
C
C
=
T
P
+
T
N
T
P
+
F
P
+
T
N
+
F
N
ACC=\frac{TP+TN}{TP+FP+TN+FN}
ACC=TP+FP+TN+FNTP+TN
3.灵敏度、特异度和ROC曲线
灵敏度(TPR,True Positive Rate)指所有正例中,正确预测为正例的样本比例:
T
P
R
=
T
P
T
P
+
F
N
TPR=\frac{TP}{TP+FN}
TPR=TP+FNTP
特异度(FPR,False Positive Rate)指所有负例中,错误识别为正例的比例:
F
P
R
=
F
P
F
P
+
T
N
FPR=\frac{FP}{FP+TN}
FPR=FP+TNFP
ROC曲线:
以FPR为x轴,TPR为y轴所做的曲线。TPR越大,FPR越小,表明模型越高效。也就是说,ROC曲线越靠近左上方,即ROC曲线下面积AUC(Aera Under Curve)越大,模型越好。
4.精确率、召回率和PR曲线
精确率P(Precision),预测正确的正例占所有预测为正例的比例:
P
=
T
P
T
P
+
F
P
P=\frac{TP}{TP+FP}
P=TP+FPTP
召回率R(Recall),预测正确的正例,占所有正例的比例。
R
=
T
P
T
P
+
F
N
R=\frac{TP}{TP+FN}
R=TP+FNTP
PR曲线:以R为x轴,以P为y轴所做的曲线。P、R越高,也就是说曲线越靠近右上角,模型效果越好。
507

被折叠的 条评论
为什么被折叠?



