
单粒子波函数空间(1)
前面我们已经简单介绍了量子力学中的力学量,对算符也有了一个初步的了解。那么,接下来我们重新从单粒子的波函数入手,在抽象的矢量空间角度审视这些问题。这种更深入的角度,对于之后讲解态和力学量的表象有着重要意义,也可以使整个知识体系更加完整。
对于粒子的波函数,前面的假定已经提到了统计解释。整个空间找到粒子的概率为1 ,故有:
以上是坐标空间的结果,但是这暗示着我们研究平方可积函数的集合,也就是使上述积分收敛的函数。我们把这个函数集合叫
这里给出一些线性代数中空间的简述:线性完备内积空间称作希尔伯特空间;线性完备赋范空间称作巴拿赫空间;有限维线性内积空间称作欧几里得空间。最后一个大家都很熟悉,对于前两个,不熟悉的同学可以查阅一下相关的资料。这个概念一定要有印象,因为希尔伯特空间是描述量子力学的基本工具。
我们之前讲过波函数的有三条性质约束:单值、有限、连续。这使得波函数构成的集合相比于
波函数空间的结构
我们来研究一下这个空间的结构:
首先,若
我们展开上面这个东西的模方很容易证明其可积性。这些性质是矢量空间的性质,可以证明这玩意儿有矢量空间的全部性质。
我们可以定义空间中的标量积:
之后为了简化积分符号只写一个,矢量符号也略去。这个积就是之前讲过的函数内积,之前几讲提到的性质也成立。
一对函数的内积与其第二个因子的关系是线性的,与第一个因子的关系是反线性的,如果内积为零就是正交的。当且仅当函数为零时自己和自己内积是零,除此之外内积是一个正实数,
两者成正比时取等。
波函数空间的离散正交归一基
这一节我们讨论
(式中右端的是克罗内克符号,两个指标相等时值为1,否则为零)则集合
则这个集合构成一个基。
我们来看波函数在基中的分量:
我们这时候进一步研究将内积表现为分量的函数。我们考虑两个波函数:
根据定义计算内积:
也就是说:
特别地:
两个波函数的内积或一个波函数的模方可以简单地用分量表示。
最后我们探讨一下封闭性关系式。(5)表明基集合中的每一个函数都已经正交归一化为1,这些函数两两正交。我们现在建立另一个表明这个集合构成一个基的封闭性关系式。
我们将(8)代回(5):
可见
这个方程正是
于是有:
这是封闭性关系式。反之如果一个正交归一集合满足封闭性关系式,则此集合构成一个基。这是因为我们可以将任意函数写作如下的样子:
这次就谈到这里,下次我们会引入不属于
很多小伙伴忘了啥叫
函数定义:
三维的函数定义类推很简单,变量改成三维,积分变成全空间。所以下面直接给一维的性质就好。
对于阶梯函数:
这个函数还有这样的性质:
这是偶函数。
上面这个式子很重要,表示函数的提取作用。
关于复合函数:
设
如果函数满足
好了,这次的内容就到这里,下期再见!
418

被折叠的 条评论
为什么被折叠?



