用matlab2012b计算自控原理的稳态误差,浅谈用终值定理计算自控原理中的稳态误差...

本文探讨了在自动控制原理中,如何利用终值定理简便地计算控制系统的稳态误差。稳态误差是衡量系统控制精度的重要指标,通过拉普拉斯变换的终值定理,可以简化高阶系统误差的计算过程。文中通过实例详细解释了计算方法,并展示了其在教学中的实用性。
摘要由CSDN通过智能技术生成

·115·  哈尔滨职业技术学院学报   2013年第2 期   Journal of Harbin Vocational & Technical College 在自动控制原理中,控制系统的稳态误差是表征控制系统稳态准确度(即控制精度)的重要性能。通过求e(t)响应表达式来求稳态误差,高阶系统相当复杂,如:ess(t)=C0dr(t)+ C1dr(t)+ C2dr(t)+ ⋯ ,而采用终值定理计算则要简单得多。一、稳态误差的基本概念 系统的误差e(t)一般定义为希望值与实际值之差。即 e(t)=希望值-实际值,对于图1所示系统典型结构,其误差的定义有两种: (1)e(t)=r(t)-c(t) (2)e(t)=r(t)-b(t) 图1 典型系统结构图 当图1中反馈通道H(s)=1,即单位反馈时,则上述两种定义统一为e(t)=r(t)-c(t),它反映了系统跟踪输入信号r(t)和抗干扰n(t)的整个过程中的精度。 误差信号的稳态分量叫做控制系统的稳态误差[1],记为ess(t),若时间t趋于无穷时,e(t)的极限存在,则稳态误差为 。二、稳态误差的计算方法 用拉普拉斯变换的终值定理计算稳态误差Ess(t) 比求解系统的误差响应e(t)要简单得多。拉普拉斯变换终值定理为: ,式中F(s)为 的拉氏变换。应用终值定理计算稳态误差: 。由上式可以看出:利用终值定理计算稳态误差e ss,实质问题 中图分类号:O231   文献标识码:A  文章编号:1008—8970—(2013)02—0115—02 [收稿日期]2012-10-15 [作者简介]刘静(1983-),女,重庆科创职业学院讲师。 浅谈用终值定理计算自控原理中的稳态误差 刘 静 (重庆科创职业学院, 重庆 永川 402160) 摘 要:本文介绍了用终值定理计算稳态误差的方法,并通过实例说明应用这种方法计算简捷,对课堂教学有较好的效果。 关键词:终值定理;干扰误差;给定误差;传递函数 G2(S)r(t) G1(S) n(t) + G2(S) b(t) - 归结为求误差e(t)的拉氏变换E(s)。由图1所示系统,求在输入信号和干扰作用下误差的拉氏变换式E(s): E(s)=R(s)-B(s) (1)式中B(s)为反馈量,其表达式为: (2)式中 为反馈量B(s)对输入量R(s)的闭环传递函数, 为反馈量B(s)对干扰R(s)的闭环传递函数。 将( 2)式代入( 1)式得 (3)由图1可求出 (4)称 为系统对输入信号的误差传递函数。 (5)称 为系统对干扰的误差传递函数[2]。 由式( 3)( 4)( 5)可将E(s)改写成: ER(s)为输入信号引起的误差的拉氏变换,EN(s) 为干扰引起的误差的拉氏变换。 三、应用举例 例1、系统结构如图2所示,当输入信号r (t) =1(t),干扰信号n(t)=1(t)时,求系统总的稳态误差ess。 图2 例1系统结构图 解:第一步,判别稳定性。由于是一阶系统,所以只要参数k1、k2大于零,系统就稳定。 K1/SR K1 N + E C ·116·  哈尔滨职业技术学院学报   2013年第2 期   Journal of Harbin Vocational & Technical College 第二步,求 E(s): 由结构图2,并根据式( 4)( 5),得 又知输入信号r (t) =1(t),干扰信号n(t) =1(t),所以 , ,则 第三步,应用终值定理计算稳态误差ess 例2、求图3所示系统的总的稳态误差。误差e=r-c。 图3 例2系统结构图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值