超级计算机领域的科研人员,美国科研人员使用的超级计算机首次曝光,脑肿瘤图像识别率达人类医生水平...

原标题:美国科研人员使用的超级计算机首次曝光,脑肿瘤图像识别率达人类医生水平

在美国,每年有19万以上患者诊断被为原发性脑肿瘤或脑转移瘤。原发性脑肿瘤的总体发生率约为11-12/10万人,其中胶质瘤约占到所有原发性脑肿瘤的一半。我国原发性脑瘤的年发病率为3-6/10万。

原发性脑瘤是大脑中的起源肿瘤。转移性脑瘤是从大脑扩散到身体的另一部分的癌细胞并形成肿瘤。脑肿瘤在身体的不同位置有很大的不同,细胞类型和严重程度有些是由于基因不断突变在身体产生恶性细胞。

164de33ae684bc65a620bc3094866b93.png

来自德克萨斯大学奥斯汀分校机械工程教授,计算工程与科学研究所(ICES)仿真并行算法和数据分析主管George Biros已经研究此领域将近十年,他的研究以创建准确高效的算法来表征胶质瘤、原发性脑瘤和转移性脑肿瘤。

事实证明,Biros和他的团队,能够在不到4个小时内对140个大脑进行正确地数据预测,且精准度近90%,与人类放射科医师相当。Biros说,他们的方法是完全自动的,只需要少量的初始算法参数,来评估图像数据并对肿瘤进行分类,而无需任何手动操作。

新方法还首次曝光了由德克萨斯高级计算中心(TACC)研发的超级计算机。

▍参加2017 MICCAI

他们的系统在挑战中排名中位居前列。

de4d6a7e2507049a79f804256e1c418b.png

在第20届医学图像计算和计算机辅助干预国际会议(2017MICCAI )上,George Biros和来自宾西法尼亚大学Christos Davatzikos教授,休斯顿大学Andreas Mang教授和斯图加特大学Miriam Mehl教授,提出了一种新的全自动方法。

将肿瘤生长的生物物理模型与机器学习算法相结合,用于分析胶质瘤患者的磁共振(MRI)成像数据。

8e576a28139c4b959808a21f7ea39cc1.png

顶行为初始配置;第二行显示耦合肿瘤反转和 registration scheme的最后一次迭代。底部的三个图像显示相应的硬分割。获得的基于图像的分割(中间图像)和患者的真实分割非常相似。

Biros的团队在2017年的多模式脑肿瘤分割挑战(BRaTS'17)中测试了他们的新方法,这是一项年度大赛,来自世界各地的研究小组介绍了计算机辅助识别和分类脑肿瘤的方法和结果,以及手术前MRI扫描不同的癌症区域的类型。

Biros说:“参加竞赛有助于帮助患有神经胶质瘤的患者,并发现最常见的原发性脑肿瘤与患者的异常组织的表征有关。“我们的目标是通过图像分割,自动化识别不同类型的异常组织 - 水肿和坏死组织。这就类似于拍摄全家福来进行面部识别一样。

▍训练和测试方式

为了准备挑战赛,Biros和联合团队的研究人员提前提供了300套脑图像,所有团队都对其进行了训练。最后,从140名患者处获得了数据,并且必须在短短两天的时间内确定肿瘤的位置,并将其分成不同的组织类型。

“在这个48小时里,我们需要竭尽所能,”Biros解释说。

Biros及其团队使用的图像处理,分析和预测流程有两个主要步骤:

第一步利用监督学习为目标类(“全肿瘤”,“水肿”,“肿瘤核”)创建概率图;

第二步是将这些概率与生物物理模型相结合,生物物理模型表示肿瘤如何以数学方式生长,有助于找出相关性。

TACC超级计算机的运算能力,使得Biros的团队能够使用大型最近邻分类器(机器学习方法)。对于每个体素或三维像素,在MR脑图像中,系统尝试找到已经观测的脑中所有类似的体素,以确定该区域是否代表肿瘤或非肿瘤。

e5ef094dd67d337645748f0e5dadda99.png

来自BRaTS Challenge训练集的图像。从左到右:在前两列中,展示了SIBIA-G1S细分(用红色框勾画),然后是ground truth segmentation(由BRATS17组织者提供)。在最后三列中,显示了每种情况下的T2,T1ce和FLAIR MRI图像。在分割图像(第一列)中,白色为增强肿瘤,浅灰色为水肿,深灰色为非增强型肿瘤。

要对300个大脑(150万体素/大脑)评估,这意味着计算机必须为其分析的140个未知大脑的每个新体素(五亿体素)做检查,以决定体素是体现肿瘤还是健康组织。

▍千万亿次计算能力的超级计算机

Biros说:“我们使用fast algorithms and approximations来实现这一点,但我们仍然需要超级计算机。”

1e0ecaf12d850a9ee0215b4c212cd4c6.png

Stampede2是德克萨斯大学奥斯汀分校高级计算中心(TACC)的超级旗舰计算机,使用英特尔多核心(MIC)架构的第二代处理器。作为战略性国家资源,将为美国数千名研究人员提供高性能的计算能力。

e398976c62cd5db8d32017f441b8be6b.png

TACC部署的第二个PETASCALE(千万亿亿计算算)系统

ea4f7595a3c8fccd72ce1a83235f96da.png

Maverick是一个专门用来做交互式可视化和数据分析的。它结合了交互式高级可视化和大规模数据分析以及传统高性能计算的功能,能够快速的数据移动和高级统计分析。Maverick采用NVIDIA K40 GPU进行远程可视化和数据分析计算,为国家开放科学界提供专业支持。

分析流程中的每个步骤都使用单独的TACC计算系统。最近邻机器学习分类组件在Stampede2上同时使用了60个节点(每个由68个处理器组成),TACC的最新超级计算机是世界上最强大的系统之一。(Biros是第一批在春季使用Stampede2超级计算机的研究人员,并且能够测试和调整他们的新处理器算法。)他们使用Lonestar 5运行生物物理模型,用Maverick来做数据分析。

大多数团队不得不限制他们使用的训练数据量,或者在整个训练集上应用更简化的分类器算法,但优先访问TACC的超级计算机生态系统,意味着Biros的团队可以探索更复杂的方法。

TACC的高性能计算总监Bill Barth说:“George在BRaTS挑战赛之前来询问他们是否可以优先使用Stampede2,Lonestar5和Maverick,以确保他们的工作及时完成,以应对挑战。“我们决定在每个系统上给予他们一个空间,以满足他们48小时的挑战需求。”

▍十年新突破

cc626d3a31ef968dd6c909d06f4fe890.png

德克萨斯大学奥斯汀分校机械工程教授George Biros

Biros说,该团队研究具有可扩展性,基于生物物理学的图像分析系统,是10年来对各种计算问题的导向研究结果。

Bios表示,BRaTS竞赛是他研究的一个转折点。“我们有所有的工具和基本的想法,可以利用竞赛来打磨它,看看我们如何做进一步的优化。

图像分割分类器将于今年年底前与宾夕法尼亚大学合作伙伴合作部署,机器学习技术不会替代放射科医师和外科医生,但它会提高评估的效率,并可能加速诊断过程。

团队开发的方法已经超出脑肿瘤治疗的范畴。也适用于医学以及物理学中的许多问题,包括半导体设计和等离子体动力学。

相关资源

2017MICCAI

http://www.miccai2017.org/

The Multimodal Brain Tumor Image Segmentation Benchmark

http://ieeexplore.ieee.org/document/6975210/authors?ctx=authors

数据集+软件+教程

http://braintumorsegmentation.org/返回搜狐,查看更多

责任编辑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值