高斯过程分类 matlab,matlab 高斯过程回归模型 matlab Gaussian process regression model

【实例简介】

高斯过程回归及分类的代码,内容全,有实例,注释清晰。包括分类系列和预测回归系列,值得感兴趣的同学学习借鉴。里面有对应的数据和demo程序,程序可运行,MATLAB2014a下测试通过,其他版本没有测试。(网页版的0

【实例截图】

【核心代码】

_Gaussian-process-regression

├── gaussian

│   ├── calcGP.m

│   ├── GPtutorialFcn.m

│   ├── GPtutorial.m

│   ├── hypSample.m

│   ├── k_GP.m

│   └── stdRegion.m

└── gpml

├── doc

│   ├── alg21.gif

│   ├── alg31.gif

│   ├── alg32.gif

│   ├── alg35.gif

│   ├── alg36.gif

│   ├── alg51.gif

│   ├── alg52.gif

│   ├── classification.html

│   ├── fig2de1.gif

│   ├── fig2de2.gif

│   ├── fig2de3.gif

│   ├── fig2d.gif

│   ├── fig2dl1.gif

│   ├── fig2dl2.gif

│   ├── fig2dl3.gif

│   ├── figepp2.gif

│   ├── figepp.gif

│   ├── figl1.gif

│   ├── figlapp2.gif

│   ├── figlapp.gif

│   ├── figlf.gif

│   ├── figl.gif

│   ├── figlm.gif

│   ├── index.html

│   ├── regression.html

│   ├── sparse-approx.html

│   └── style.css

├── gpml

│   ├── approxEP.m

│   ├── approximations.m

│   ├── approxLA.m

│   ├── binaryEPGP.m

│   ├── binaryGP.m

│   ├── binaryLaplaceGP.m

│   ├── Contents.m

│   ├── Copyright

│   ├── covConst.m

│   ├── covFunctions.m

│   ├── covLINard.m

│   ├── covLINone.m

│   ├── covMatern3iso.m

│   ├── covMatern5iso.m

│   ├── covNNone.m

│   ├── covNoise.m

│   ├── covPeriodic.m

│   ├── covProd.m

│   ├── covRQard.m

│   ├── covRQiso.m

│   ├── covSEard.m

│   ├── covSEiso.m

│   ├── covSum.m

│   ├── cumGauss.m

│   ├── gauher.m

│   ├── gpr.m

│   ├── gprSRPP.m

│   ├── likelihoods.m

│   ├── logistic.m

│   ├── Makefile

│   ├── minimize.m

│   ├── solve_chol.c

│   ├── solve_chol.m

│   ├── sq_dist.c

│   └── sq_dist.m

├── gpml-demo

│   ├── Contents.m

│   ├── data_6darm.mat

│   ├── data_boston.mat

│   ├── demo_ep_2d.m

│   ├── demo_ep_usps.m

│   ├── demo_gparm.m

│   ├── demo_gpr.m

│   ├── demo_gprsparse.m

│   ├── demo_laplace_2d.m

│   ├── demo_laplace_usps.m

│   ├── gparm_fval.fig

│   ├── gparm_res.std.fig

│   └── gprgai.m

└── README

5 directories, 82 files

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值