计算机算法设计与分析(第4版) 王晓东习题解答计算机算法设计与分析(第4版) 王晓东习题解答
第一章 作业
1. 证明下列Ο、Ω和Θ的性质
1) f=Ο(g)当且仅当g=Ω(f)
证明:充分性。若f=Ο(g),则必然存在常数c >0 和n ,使得nn ,有f
1 0 0
c *g(n)。由于c 0,故g(n) 1/ c *f(n),故g=Ω(f) 。
1 1 1
必要性。同理,若g=Ω(f),则必然存在c >0 和n ,使得nn ,有g(n) c
2 0 0 2
*f(n). 由于c 0,故f(n) 1/ c *f(n),故f=Ο(g)。
2 2
2) 若f=Θ (g)则g=Θ (f)
证明:若f=Θ (g),则必然存在常数c >0 ,c >0 和n ,使得nn ,有c *g(n)
1 2 0 0 1
f(n) c *g(n)。由于c 0,c 0,f(n) c *g(n)可得g(n) 1/c *f(n),同时,
2 1 2 1 1
f(n) c *g(n),有g(n) 1/c *f(n),即1/c *f(n) g(n) 1/c *f(n),故g=Θ (f)。
2 2 2 1
3) Ο (f+g)= Ο (max(f,g)),对于Ω和Θ同样成立。

该内容提供了《计算机算法设计与分析》第四版王晓东的习题解答,包括Ο、Ω和Θ性质的证明,以及算法设计如寻找第二大元素,讨论了算法的时间复杂度。
最低0.47元/天 解锁文章
658

被折叠的 条评论
为什么被折叠?



