计算机算法设计与分析第四版在线,计算机算法设计与分析(第4版) 王晓东习题解答计算机算法设计与分析(第4版) 王晓东习题解答.pdf...

该内容提供了《计算机算法设计与分析》第四版王晓东的习题解答,包括Ο、Ω和Θ性质的证明,以及算法设计如寻找第二大元素,讨论了算法的时间复杂度。
摘要由CSDN通过智能技术生成

计算机算法设计与分析(第4版) 王晓东习题解答计算机算法设计与分析(第4版) 王晓东习题解答

第一章 作业

1. 证明下列Ο、Ω和Θ的性质

1) f=Ο(g)当且仅当g=Ω(f)

证明:充分性。若f=Ο(g),则必然存在常数c >0 和n ,使得nn ,有f

1 0 0

c *g(n)。由于c 0,故g(n) 1/ c *f(n),故g=Ω(f) 。

1 1 1

必要性。同理,若g=Ω(f),则必然存在c >0 和n ,使得nn ,有g(n) c

2 0 0 2

*f(n). 由于c 0,故f(n) 1/ c *f(n),故f=Ο(g)。

2 2

2) 若f=Θ (g)则g=Θ (f)

证明:若f=Θ (g),则必然存在常数c >0 ,c >0 和n ,使得nn ,有c *g(n)

1 2 0 0 1

f(n) c *g(n)。由于c 0,c 0,f(n) c *g(n)可得g(n) 1/c *f(n),同时,

2 1 2 1 1

f(n) c *g(n),有g(n) 1/c *f(n),即1/c *f(n) g(n)  1/c *f(n),故g=Θ (f)。

2 2 2 1

3) Ο (f+g)= Ο (max(f,g)),对于Ω和Θ同样成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值