加固计算机的冲击试验标准,机械冲击试验参考标准是什么

产品在生命周期中可能遭受运输和使用过程中的冲击,尤其是手持型产品如手机。机械冲击试验用于评估产品结构强度和包装保护效果,通过模拟半正弦波、方波、锯齿波等冲击,进行三轴六面的测试。试验参照GB/T2423.5等标准,旨在了解产品弱点、功能退化,保证产品可靠性与生产线一致性。
摘要由CSDN通过智能技术生成

消费性产品在生命周期中通有在两种情况下会遭受到冲击,一种是运输过程中因为车辆行走在颠坡道路产生碰撞与跳动或因人员搬运时掉落地面所产生的撞击,对于手持型产品(如手机)在未受缓冲保护所遭受到的掉落冲击对产品危害更大。产品在设计阶段利用机械冲击试验可快速验证结构强度水平,或判断包装材料是否有适当缓冲作用。试验的严苛程度取决于波形、G值、脉冲时间、冲击次数。

日常生活中我们常碰到冲击的波形有半正弦波、方波和锯齿波,试验以未包装产品为主,一般采取三轴六面,每面冲击三次为主要规格。

参考的测试标准

GB/T 2423.5,IEC 60068-2-27,MIL-STD-202G,EIA-364-27等。

冲击试验以模拟设备及其组件在运输或使用过程中,可能遭遇到冲击效应为主,并透过冲击波于瞬间暂态能量交换,分析产品承受外界冲击环境的能力。试验的目的在于了解其结构弱点以及功能退化情况,有助于了解产品的结构强度以及外观抗冲击,跌落等特性。有效地评估产品的可靠性和监控生产线产品的一致性。

适用产品范围:

电子产品的单体、包装、及所涉及运输的产品都可以。

AI实战-出租车价格数据集分析预测实例(含20个源代码+65.69 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共124.23 KB;数据大小:1个文件共65.69 KB。 使用到的模块: pandas seaborn xgboost matplotlib.pyplot sklearn.preprocessing.RobustScaler sklearn.metrics.mean_absolute_error sklearn.model_selection.GridSearchCV sklearn.model_selection.train_test_split numpy warnings joblib sklearn.set_config sklearn.impute.SimpleImputer sklearn.preprocessing.LabelEncoder sklearn.model_selection.cross_val_score sklearn.preprocessing.StandardScaler sklearn.metrics.r2_score sklearn.metrics.mean_squared_error sklearn.linear_model.LinearRegression sklearn.linear_model.Lasso sklearn.linear_model.Ridge sklearn.neighbors.KNeighborsRegressor sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor os sklearn.preprocessing.OneHotEncoder sklearn.compose.ColumnTransformer sklearn.pipeline.Pipeline sklearn.tree.DecisionTreeRegressor sklearn.svm.SVR sklearn.neural_network.MLPRegressor bokeh.io.output_notebook bokeh.io.show bokeh.plotting.figure bokeh.layouts.gridplot sklearn.preprocessing.PolynomialFeatures scipy.stats sklearn.metrics.mean_absolute_percentage_error sklearn.ensemble.ExtraTreesRegressor xgboost.XGBRegressor lightgbm.LGBMRegressor sklearn.impute.IterativeImputer statsmodels.stats.outliers_influence.variance_inflation_factor statsmodels.api sklearn.metrics.( plotly.express psynlig.plot_correlation_heatmap bokeh.plotting.show bokeh.plotting.output_notebook catboost.CatBoostRegressor sklearn.linear_model.ElasticNet missingno
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值