算法(algorithm):
对一个现有的问题我们采取的解决过程及方法,可简单可复杂,可高效可低效。一个用算法实现的程序会耗费两种资源:处理时间和内存。很显然,一个好的算法应该是耗费时间少、所用内存低,但是,在实际中,我们往往不能两方面顾全!
算法的效率分析标准:
衡量算法是否高效主要是从以下几个方面来分析:
¨简单性和清晰度
一般我们都希望算法越简单越清晰就越好,但是要保证效率为前提。可是,往往我们在复杂的项目开发中所遇见的问题比较复杂,对时间和空间效率的要求也较高,因此,算法一般都会比较复杂。
¨空间效率
注意:这里的空间效率并不是指算法代码占用的内存指令空间,而是指代码中的数据分配(变量与变量所引用值的分配)以及方法调用所使用的内存(调用栈的空间分配)。比如,我们常用的递归,虽然会使代码清晰简单,但是内存的使用也会大大提高。理想的,程序所使用的内存应该和数据及方法调用 所占用内存相等。但事实总是会有些额外的开销!因此,空间效率也是我们衡量算法的方面之一。
¨时间效率
针对同一任务所使用的不同算法所执行的时间都会不同。
比如:在一个数据集合中查找数据,我们会从第一个数据开始查找,一直找到需要的数据为止,如果查找数据存在,则这种查找方式(称之为线性查找)一般要查找半个列表!然而,如果数据的排放是有序的,则通过另一种查找方法会更有效,即二分查找法,首先从集合的中间开始,如果查找值在中间值的前面,则从集合的前一半重复查找,否则从后一半查找,每执行一次则将查找的集合减少为前一次的一半。
算法的类型:
所有的算法可以大概分为以下三种类型:
1.贪婪算法(greedy algorithm)
该算法每一步所做的都是当前最紧急、最有利或者最满意的,不会考虑所做的后果,直到完成任务。这种算法的稳定性很差,很容易带来严重后果,但是,如果方向正确,那该算法也是高效的。
2.分治算法(divide-and-conquer algorithm)
该算法就是将一个大问题分解成许多小问题,然后单独处理这些小问题,最终将结果结合起来形成对整个问题的解决方案。当子问题和总问题类型类似时,该算法很有效,递归就属于该算法。
3.回溯算法(backtracking algorithm)
也可以称之排除算法,一种组织好的试错法。某一点,如果有多个选择,则任意选择一个,如果不能解决问题则退回选择另一个,直到找到正确的选择。这种算法的效率很低,除非运气好。比如迷宫就可以使用这种算法来实现。
实际上,我们对算法的效率高低评价,主要是在时间和内存之间权衡。根据实际情况来决定,比如有的客户不在乎耗用的内存是多少,他在乎的是执行的速度,那么一个用内存来换取更高执行时间的算法可能是更好的。同样,有的客户可能不想耗用过多内存同时对速度也不是特别要求。不管怎样,效率是算法的主要特性,因此关注算法的性能尤其重要!标准的测量方法就是找出一个函数(增长率),将执行时间表示为输入大小的函数。选择处理的输入大小来说增长率比较低的算法!
计算增长率的方式:
1.测量执行时间
通过System.currentTimeMillis()方法来测试
部分代码:
// 测量执行时间
staticvoidcalculate_time(){
longtest_data = 1000000;
longstart_time = 0;
longend_time = 0;
inttestVar = 0;
for(inti = 1; i <= 5; i++){
// 算法执行前的当前时间
start_time = System.currentTimeMillis();
for(intj = 1; j <= test_data; j++){
testVar++;
testVar--;
}
// 算法执行后的当前时间
end_time = System.currentTimeMillis();
// 打印总共执行时间
System.out.println("test_data = "+ test_data +"\n"+
"Time in msec = "+ (end_time - start_time) +"ms");
//环后将循环次数加倍
test_data = test_data * 2;
}
}
以上代码将分别计算出1000000、2000000、4000000...次的循环时间。
缺点:
Ø不同的平台执行的时间不同
Ø有些算法随着输入数据的加大,测试时间会变得不切实际!
2.指令计数
指令---指编写算法的代码.对一个算法的实现代码计算执行指令次数。两种类型指令:不管输入大小,执行次数永远不变;执行次数随着输入大小改变而改变。一般,我们主要测试后一种指令。
例:计算指令执行次数
staticvoidcalculate_instruction(){
longtest_data = 1000;
intwork = 0;
for(inti = 1; i <= 5; i++){
intcount = 0;
for(intk = 1; k <= test_data; k++){
for(intj = 1; j <= test_data; j++){
// 指令执行次数计数
count++;
work++;
work--;
}
}
System.out.println("test_data = "+ test_data +"\n"+
"Instr. count = "+ count );
test_data = test_data * 2;
}
}
3.代数计算
代码1:
longend_time = 0;t1
inttestVar = 0;t2
for(inti = 1; i <= test_data; i++){ t3
testVar++;t4
testVar--;t4
}
假设t1 --- t4分别代表每条语句的执行时间,那么,以上代码的总执行时间为:t1 + t2 + n(t3 + 2t4).其中n = test_data,当test_data增大时,t1和t2可以忽略不计,也就是说,对于很大的n,执行时间可以近似于:n(t3 + 2t4)
4.测量内存使用率
一个算法中包含的对象和引用的数目,越多则内存使用越高,反之越低。
比较增长率:
1.代数比较法
条件1:c≦f(n)/g(n)≦d (其中c和d为正常数,n代表输入大小)
当满足以上条件1时,则f(n)和g(n)具备相同的增长率,或者两函数复杂度的阶相同!
如:f(n) = n + 100和g(n) = 0.1n + 10两函数就具备相同的增长率。
条件2: 当n增大时,f(n)/g(n)趋向于
当满足此条件2时,则该两个增长函数有不同的增长率。
比如:f(n) = 10000n + 20000和g(n) = n?2 + n + 1。请大家比较以上两函数增长率是否一样,如果不一样,谁的增长率小?
2.大O表示法
如果f的增长率小于或者等于g的增长率,则我们可以用如下的大O表示法:
f = O(g)
O表示on the order of
将代码1的代数增长率函数用大O表达式如下:
f(n) = t1 + t2 + n(t3 + 2t4)
= a1*n + a
= O(n)
其中a1 = t3 + 2t4; a = t1 + t2
3.最佳、最差、平均性能
对每一个算法不能只考虑单一的增长率,而应该给出最佳、最差、平均的增长率函数