一个数列求通项的问题 a(n+1)+b/(an)=c的递推公式能求通项公式么(b和c为常数)那a(n+1)-b/(an)=c呢?
答案:4 信息版本:手机版
解决时间 2019-10-06 08:14
已解决
2019-10-05 13:19
此列递推数列的求法是否和常数的大小有关?似乎在高中阶段这类数列很少碰到……
但是有简便的推导这类数列的方法么?例如
和像2010全国一卷22题的思路这种类似的题目····
最佳答案
2019-10-05 14:12
分式递推的可用特征根方法:a(n+1)-b/an=c
x-b/x=c,
x^2-cx+b=0
x=x1, x2
递推式可化为:
a(n+1)-x1=k(an-x2)
bn=[a(n+1)-x1]/[an-x2], 此为等比数列,求出bn
进而再求出an.
全部回答
1楼
2019-10-05 16:47
此列递推数列的求法是否和常数的大小有关? 是....
有简便的推导这类数列的方法么? 有....
前面和楼上的童鞋一样,用特征方程求不动点.
x+b/x=c,
0=x^2-cx+b, Delta=c^2-4b.
有2种情形(与常数有关哈..)
(1)Delta = c^2-4b>=0, 特征方程有不动点. 设为d. 则有0=d^2-cd+b=d(d-c)+b, [b应该不为0吧, 要不然,题目变成a(n+1)=c, 已经知道通项了....], b不为零时,d不为0, 并且, d-c也不为零. d=b/(c-d).
a(n+1)-d=c-b/a(n)-d=(c-d)-b/a(n)=[(c-d)a(n)-b]/a(n)=(c-d)[a(n)-b/(c-d)]/a(n)=(c-d)[a(n)-d]/a(n),
若a(1)=d, 则a(n)=d. 搞定...
若a(1)不等于d,则若a(n+1)=d,则 a(n)=d, ..., a(1)=d, 矛盾.
因此若a(1)不等于d,则a(n)不等于d.
此时,
1/[a(n+1)-d] = [1/(c-d)]a(n)/[a(n)-d] = [1/(c-d)][a(n)-d+d]/[a(n)-d] = [d/(c-d)]/[a(n)-d] + 1/(c-d)
记b(n)=1/[a(n)-d],则
b(n+1)=[d/(c-d)]b(n) + 1/(c-d),
b(n+1)+y = [d/(c-d)]b(n)+ 1/(c-d) + y = [d/(c-d)]{ b(n)+ [(c-d)/d][1/(c-d)+y]}
y= [(c-d)/d][1/(c-d) + y],
[1-(c-d)/d]y= 1/d = [2d-c]y/d, 2d-c不等于0. [否则,1/d=0矛盾] y=1/(2d-c).
b(n+1)+1/(2d-c) = [d/(c-d)]{ b(n) + 1/(2d-c) }
{b(n)+1/(2d-c)}是首项为b(1)+1/(2d-c)=1/[a(1)-d] + 1/(2d-c), 公比为d/(c-d)的等比数列.
b(n)+1/(2d-c) = {1/[a(1)-d] + 1/(2d-c)}[d/(c-d)]^(n-1),
解出b(n), 1/[a(n)-d] = b(n), 再解出a(n). 搞定....
(2)Delta=c^2-4b此时,这个数列是周期数列.
根据递推公式a(n+1)=c-b/a(n)逐步写出数列的前面几项,直到找到周期为止.
然后根据周期,分段写出通项公式....
完...
2楼
2019-10-05 15:40
选b
3楼
2019-10-05 15:01
同楼上:分式递推的可用特征根方法:a(n+1)-b/an=c
x-b/x=c,
x^2-cx+b=0
x=x1, x2
递推式可化为:
a(n+1)-x1=k(an-x2)
bn=[a(n+1)-x1]/[an-x2], 此为等比数列,求出bn
进而再求出an.
我要举报
如果感觉以上信息为低俗/不良/侵权的信息,可以点下面链接进行举报,我们会做出相应处理,感谢你的支持!
大家都在看
推荐资讯