[shuāng qū xiàn]
双曲线
语音
编辑
锁定
讨论
上传视频
一般的,双曲线(希腊语“ὑπερβολή”,字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。
它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。
中文名
双曲线
外文名
hyperbola
学科应用
实际应用
标准方程1
x²/a²-y²/b² = 1焦点在x轴标准方程2
y²/a²-x²/b² = 1焦点在y轴
a,b大小
a >0,b >0
渐近线方程
Y=±(b/a)X或Y=±(a/b)X
离心率
e=c/a(a²+b²=c²)
参数关系
c²=a²+b²
准线方程
x=±a²/c[1]
双曲线简介
编辑
语音
在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。
双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。
双曲线出现在许多方面:
作为在笛卡尔平面中表示函数的曲线;作为日后的阴影的路径;作为开放轨道(与闭合的椭圆轨道不同)的形状,例如在行星的重力辅助摆动期间航天器的轨道,或更一般地,超过最近行星的逃逸速度的任何航天器;作为一个单一的彗星(一个旅行太快无法回到太阳系)的路径;作为亚原子粒子的散射轨迹(以排斥而不是吸引力作用,但原理是相同的);在无线电导航中,当距离到两点之间的距离而不是距离本身可以确定时,等等。
双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线的情况下,渐近线是两个坐标轴。
双曲线共享许多椭圆的分析属性,如偏心度,焦点和方向图。许多其他数学物体的起源于双曲线,例如双曲抛物面(鞍形表面),双曲面(“垃圾桶”),双曲线几何(Lobachevsky的着名的非欧几里德几何),双曲线函数(sinh,cosh,tanh等)和陀螺仪矢量空间(提出用于相对论和量子力学的几何,不是欧几里得)。[2]
双曲线名称定义
编辑
语音
我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a,小于|F1F2|)的轨迹称为双曲线;平面内到两定点的距离差的绝对值为定长的点的轨迹叫做双曲线。
即:||PF1|-|PF2||=2a
定义1:
平面内,到两个定点的距离之差的双曲线。定点叫双曲线的焦点,两焦点之间的距离称为焦距,用2c表示。
定义2:平面内,到给定一点及一直线的距离之比为常数e(e>1,即为双曲线的离心率;定点不在定直线上)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。
定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行也不通过圆锥面顶点,且与圆锥面的两个圆锥都相交时,交线称为双曲线。
定义4:在平面直角坐标系中,二元二次方程F(x,y)=Ax2+2Bxy+Cy2+2Dx+2Ey+F=0满足以下条件时,其图像为双曲线。
1、系数矩阵满秩,即
2、Δ=B2-AC>0
在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形。这时双曲线的方程退化为:.Ax²+Cy²+F=0
上述的四个定义是等价的,并且根据负号的前后位置判断图像关于x,y轴对称。
双曲线特征介绍
编辑
语音
双曲线标准方程
1、焦点在x轴上时为:
(a>0,b>0)
2、焦点在y轴上时为:
(a>0,b>0)
其中:||PF1|-|PF2||=2a,b²=c²-a²,|F1F2|=2c。
双曲线分支
可以从图像中看出,双曲线有两个分支。当焦点在x轴上时,为左支与右支;当焦点在y轴上时,为上支与下支。
双曲线焦点
在定义1中提到的两个定点称为该双曲线的焦点。双曲线有两个焦点,焦点的横(纵)坐标满足c²=a²+b²。
双曲线准线
在定义2中提到的给定直线称为该双曲线的准线。
双曲线的准线的方程是: (焦点在x轴)或
(焦点在y轴)
双曲线离心率
在定义2中提到的到给定点与给定直线的距离之比,称为该双曲线的
离心率
双曲线有两个焦点,两条准线。(注意:尽管定义2中只提到了一个焦点和一条准线,但是给定同侧的一个焦点,一条准线以及离心率可以根据定义2同时得到双曲线的两支,并且两支关于虚轴对称。所以在两侧的焦点,准线和相同离心率得到的双曲线是相同的。)
双曲线顶点
双曲线和它的焦点连线所在直线有两个交点,它们叫做双曲线的顶点。
双曲线实轴
两顶点之间的线段称为双曲线的实轴,实轴长的一半称为半实轴。
双曲线虚轴
在标准方程中令x=0,得y²=-b²,该方程无实根,为便于作图,在y轴上画出B1(0,b)和B2(0,-b),以B1B2为虚轴。
双曲线渐近线
双曲线有两条
渐近线的方程求法是:将标准方程的右边的常数改为0,即可用解二元二次的方法求出渐近线的解。
以焦点在x轴上的双曲线为例,将方程改为,移项之后两边开平方得
,这就是焦点在x轴上的双曲线的渐近线方程。