凑微分公式_高等数学–求积分的一些方法(IV 凑微分法)

本文介绍了凑微分法在解决积分问题中的应用,通过实例详细解析了如何凑微分,转换复杂的积分表达式。从简单题目出发,逐步提升难度,包括对多项式和复合函数的积分处理,并预告了后续将使用三角换元法解决更复杂的积分问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

嗨咯各位朋友!鸽了太久,还记得我咩?

首先说声抱歉,因为学业繁忙,所以就没再写下去了.(毕竟我对我的学业还是比较认真的,不管是主修还是选修(´ . .̫ . `))

emmmmmm扯远了,还是进入正题

引入

我们先来回顾一下,求f8d3f35d9e81e290d7c70f7f0828cfe3.png

可能大家的反应是:换元!

没错,这道题用换元法的确可以很快做出来。

但是,还有其他的解法,即凑微分法:(为了方便理解,我引入了中间量t,实际解题过程中我们没有必要引入这个量)719d7e679bbf1babd8aa135bc25ee4f8.png

好的我们来解读上面的过程:

首先我们凑了微分,关注这个dx是如何变成d(2x)的

在前面学导数的时候,我们知道导数可以用d[f(x)]/dx表示,即3172b8137c2dbe6ce37532407f6cdf3f.png

所以有d(2x)=2 dx,即dx=d(2x)/2

于是代入,就有6f95f64ec8ab1761b27be1a9d7fd9cb2.png

接下来就是很简单的解积分了。

(其实凑微分法本质还是换元)

提升

我们不可能停留在上面的例题,那道题太简单了

例1.求98059f6879bb58596b3ba77e0b3102bc.png

过程如下:eaa7e2f64666aefbe0c2b7615cdd362a.png

解析:

首先我们要关注x∧4+1,因为它的导数就是4x∧3

因此就有cb25f3013fd3672ad6a0ad3328529028.png

于是dx=d(x∧4+1)/4x∧3,代入就转换成解幂函数的积分问题了

例2.求8b2dcfc3c29962fe2a7edcfdcf0c21d7.png

看起来有些复杂,其实方法还是一样的:3eec687a2e8536313e2174d2d8844892.png

来看以上的过程,关注2-5x

对它求导 即d(2-5x)=-5 dx

也就是dx=-d(2-5x)/5,代入就转换为解幂函数的问题

是不是很简单?下面的例题就有难度了。

例3.求262ebcc6ca0c108a6d3797c20a15ef80.png

首先看到这个积分,你会怎么凑微分?是把-x∧2+x+1看做一个整体然后求导?好像不行吧......

我是这么解的:d8850db6c4cac4ae3828d7432df5b46b.png

是不是很懵逼?没事,且听我分解。

首先我把这个被积函数进行恒等变换,在这里也就是将分母配方了(配方法是初中学的,所以这里不再细讲如何配方)fb59cca6b0c5d589a70974b212454c93.png

我们神奇的发现,这个x–1/2貌似求导后为1,也就是5617749f5bb612f8dc0c8e7b59be9f43.png

所以就把这个积分变成了7912334281a2d9fed47f041d0b8bd255.png

问题又来了,这个积分又怎么解啊?

接下来我们要利用三角换元法来求解这个积分(这个方法我会在下一节讲解)

我们先建立一个三角形△73443f299331d952577fc514a932740f.png

根据分母,可以得到0d06b67bc7728b64d2058ec6c988ee2d.png根据分母的形式以及勾股定理,可以设出这样的三角形

因此就有96affa620c806b24ee5dd5e4cd16ebbc.png

把这个x–1/2代入到被积函数,就有51f92b34300530483affe22a535e8932.png

又因为edd169f35d44219b753b3e22cc102a10.png

代入,得d8bea8d6dab17cdef7bf3280736723d1.png

又因为96affa620c806b24ee5dd5e4cd16ebbc.png

所以67099a78ba3d5cf3982b4ee0c15f67a4.png

9307e088d685824d092ab647ede10558.png

OK.

最后祝大家新年快乐哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值