本篇是利用python来对图像进行磨皮祛斑,对人脸进行“美图”,首先来上效果图,第一张是原图,第二张是磨皮后的图(图源自互联网),可以看出效果挺好而且很自然不会很失真


整个过程和基本代码如下:
先用双边滤波进行降噪,双边滤波是一种非线性滤波,能够达到去噪保边的效果。相比高斯滤波,还考虑了灰度相似性,所以双边滤波是结合图像的空间邻近度和像素值相似度的一种折衷处理。
temp1 = cv2.bilateralFilter(img, 75, 255, 5)

然后将降噪后的图像减去原图像,提取需要处理的部分,可以可能到脸部有许多白色的斑点。
temp2 = cv2.subtract(temp1, img)

再对提取来的部分进行高斯降噪处理
temp3 = cv2.GaussianBlur(temp2, (5,5), 0)

temp4 = cv2.add(img, temp3)
然后再将降噪处理的部分和原图相加,获得最终磨皮后的图

所有代码:
import cv2 img = cv2.imread("pic") temp4 = np.zeros_like(img) temp1 = cv2.bilateralFilter(img, 75, 255, 5) cv2.imshow("temp1 ", temp1) temp2 = cv2.subtract(temp1, img) cv2.imshow("temp2 ", temp2) temp2 = cv2.add(temp2, (10, 10, 10, 128)) # cv2.imshow("temp 2_2", temp2) # temp3 = cv2.GaussianBlur(temp2, (2 * v2 - 1, 2 * v2 - 1), 0) temp3 = cv2.GaussianBlur(temp2, (5,5), 0) cv2.imshow("temp 3", temp3) temp4 = cv2.add(img, temp3) cv2.imshow("temp 4", temp4) dst = cv2.addWeighted(dst, p, temp4, 1 - p, 0.0) dst = cv2.add(dst, (10, 10, 10, 255)) cv2.imshow("results ", dst)
相关阅读:https://mp.weixin.qq.com/s/MxtZp-XF4uuihLYecNpQkg
本文介绍如何使用Python进行图像磨皮处理,通过双边滤波降噪并结合高斯滤波,实现自然的美图效果。示例展示了处理前后的对比,并提供了相关代码。

207

被折叠的 条评论
为什么被折叠?



