判别分析分为r型和q型吗_浅谈聚类分析与判别分析

降维与分类是多元统计分析的两个主题,在这里,我浅谈一下的聚类分析和判别分析主要用于

分类。

聚类分析

按分析对象可分为两种:Q型聚类(对样本的聚类),R型聚类(对变量的聚类)

按具体方法可分为两种:一般小样本数据可以用谱系聚类法,大样本数据一般用快速聚类法(K 均值聚类法)。

用谱系聚类法聚类时,聚多少类合适需要根据统计量判断,一般用R2统计量、半偏相关统计量、伪t2统计量以及伪F统计量。

这里给出谱系聚类法算法:

1)n个样品开始时作为n个类,计算两两之间的距离,构成一个对称距离矩阵

fce19a937119003a6c7df98c81a40bc3.png

2)选择D(0)中的非对角线上的最小元素,设这个最小元素是D(pq)。这时G(p)={x(p)},G(q)={x(q)}。将G(p),G(q)合并成一个新类G(r)={G(p),G(q)}。在D(0)中消去G(p),G(q)所对应的行与列,并加入由新类G(r)与剩下的其他未聚合的类间的距离所组成的一行和一列,得到一个新的距离矩阵

D(1),它是n-1阶方阵。

3)从D(1)出发重复步骤2的作法得D(2)。再由D(2)出发重复上述步骤,直到n个样品聚为1

个大类为止。

4)在合并过程中要记下合并样品的编号及两类合并时的水平(即距离)并绘制聚类谱系图。

判别分析

首先这里马氏距离的概念很重要,如下图。Σ是总体G的协方差矩阵,μ是总体G的均值向量

213fba48500a2fc71131cd0fc9f9d894.png

这构成了距离判别的核心。

其他主要几种判别法是Fisher判别,Bayes判别和逐步判别。一般用Fisher判别即可,要考虑概率及误判损失最小的用Bayes判别,但变量较多时,一般先进行逐步判别筛选出有统计意义的变量,再结合实际情况选择用哪种判别方法。

聚类分析与判别分析的区别与联系

都是研究分类的,在进行聚类分析前,对总体到底有几种类型不知道(研究分几类较为合适需从

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页