Simpson's rule for numerical integration
Z = SIMPS(Y) computes an approximation of the integral of Y via the Simpson's method (with unit spacing). To compute the integral for spacing different from one, multiply Z by the spacing increment.
Z = SIMPS(X,Y) computes the integral of Y with respect to X using the Simpson's rule.
Z = SIMPS(X,Y,DIM) or SIMPS(Y,DIM) integrates across dimension DIM
SIMPS uses the same syntax as TRAPZ.
Example:
-------
% The integral of sin(x) on [0,pi] is 2
% Let us compare TRAPZ and SIMPS
x = linspace(0,pi,6);
y = sin(x);
trapz(x,y) % returns 1.9338
simps(x,y) % returns 2.0071