orb特征 稠密特征_基于ORB-SLAM2构建八叉树地图 杨栋梁、姚上斌 10.20

本文介绍了通过ORB-SLAM2构建八叉树地图的方法,研究了如何从点云数据转换为八叉树地图,并探讨了概率计算在点云地图中的应用。在实验中,尽管ORB-SLAM2生成的地图仍为稀疏,但通过高翔博士的版本,实现实时点云可视化。提出了利用稀疏点云和概率更新构建稠密地图的构想。
摘要由CSDN通过智能技术生成

一、项目任务

通过对于前期工作总结以及会议讨论,之前所寻找方法并不适用于我们的项目,暂时放弃对于之前方法的研究。

本周任务如下:

1.联系学长询问其毕设论文相关实现问题

2.网上查找与项目方案(目前暂定通过稀疏点云构建八叉树地图,进而转化为栅格地图的方案)相似的文献

二、完成情况

首先,通过与学长的交流,解答了一些疑问;

1.关于八叉树地图中概率的问题如何计算?

开始以为学长从点云地图到八叉树地图中使用了自己的方法,经过与学长的交流,学长告诉我可以去网上查找,用的就是网上所述方法,在UBUNTU使用一条终端语句调用OCTOMAP,显示在RVIZ中 便可形成通过八叉树地图实现从点云地图到栅格地图的转化(具体实现尚未进行实验),高翔在视觉SLAM十四讲给出了相关解释:

构建八叉树地图,输入是一个Pcd(point cloud date)文件(就查找了一下该种类型文件相关知识):

7ee9334ee9aea9cbeee4aa6435bbca11.png

首先,点云数据是指在一个三维坐标系中的一组向量的集合。这些向量通常以X,Y,Z三维坐标的形式表示,一般主要代表一个物体的外表面几何形状,除此之外点云数据还可以附带RGB信

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值