欢迎阅读八年级下册数学期中考试知识点复习
第一章证明(二)
一. 等腰三角形
1. 性质:等边对等角
2. 判定:等角对等边
3. 推论:“三线合一”
4.等边三角形的性质及判定定理
例1、已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A 的度数为()
A.30°B.45°C.36°D.72°
图1
例2、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()
A.30°
B.36°
C.45°
D.70°
已知等腰三角形一角,求其他两角的情况。
注意:等边三角形与轴对称、中心对称的关系。
二.直角三角形(含30°的直角三角形的边的性质)
※1. 勾股定理及其逆定理
※2. 命题与逆命题
※3. 直角三角形全等的判定定理
定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)
三. 线段的垂直平分线
※1. 线段垂直平分线的性质及判定
※2.三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.
例1、如图,△ABC中,AB=AC,DE是AB的垂直平分线, AB=8,BC=4,∠A=36°,则∠DBC= , = .
△BDC的周长C
四. 角平分线