机器学习概论1——简介
机器学习概论系列主要整理机器学习方面的一些理论知识,而具体实现则主要在PyTorch学习笔记中记录。本篇是机器学习学习笔记系列第一篇,本篇在观看了读芯术AI网课后整理而成。
1、机器学习定义
机器学习是一门多领域交叉学科,专门研究计算机怎样模拟或实现人类的学习行为,以获取新知识或技能,重新组织已有的知识结构使之不断改善自身的性能。——from百度百科
机器学习是通过训练数据集来训练模型,在遇到未知数据时,通过训练好的模型来得出结果。
学习的重点在于学习这个模型( 即f(x) ),其由三部分组成
- 模型定义:针对具体问题所作的假设空间,即确定要训练的模型
- 策略:对模型学习结果的评价标准,引导模型的学习方向
- 算法:如何求解模型参数
2、机器学习方法分类
- 有监督学习:从给定的有标签(label)的训练数据集中学习出一个函数(模型参数),当新的数据到来时可以根据这个函数预测结果。常见任务包括分类与回归 ,如鸢尾花分类,房价预测
- 无监督学习:没有标签的训练数据集,需要根据样本间的统计规律对样本集进行分析,常见任务如聚类等。
- 半监督学习:结合(少量的)标签训练数据和(大量的)无标签数据来进行数据的分类学习

- 增强学习:外部环境对输出只给出评价信息而非正确答案,学习机通过强化受奖励的动作来改善自身的性能 。类似于小孩子走路,成功走一步后将会获得奖励,以此来告诉他这个动作的正确性。如:游戏AI
最低0.47元/天 解锁文章
332

被折叠的 条评论
为什么被折叠?



