服务器维护有什么好处,ADW的服务器有什么好处

16.3.1版本中引入了Allegro Design Workbench(ADW)16.5版本的一些增强功能。 16.5版本扩展了这些版本,重点是提高性能。

主要的新增强功能是:

使用新的强大服务器

大大提高了服务器性能

降低管理开销

服务器监控

邮件通知

基于XML

以下提供了ADW中各种应用程序访问ADW服务器的高级流程:

1214aea4becb2483c597e6c3a7fb1127.png

在16.5 ADW版本中,几个客户注意到的速度提升非常重要。过去需要几个小时(大型数据库上传)的内容现在缩短为几分钟!使用几个客户库示例,零件表生成(PTF Gen)已从50分钟减少到2分钟和27小时到30分钟。

新服务器命令

有一些命令可以方便服务器操作。

ADWServer启动

在ADWSystem控制台中:Adwserver-start

读取服务器配置文件

取决于数据库名称

存储在settings.ini文件中的默认设置

日志错误保存到Logging.properties文件中

Mailer.properties

服务器指标在Activity.info文件中维护

ADW Server Stop

文件包含在发生任何服务器异常时应通知的“who” 》在ADW系统控制台中:Adwserver-stop

ADW服务器服务

位于 \ server \ bin

在cmdWindow中:adwservicesinstall(服务器名称)

在cmdWindow中:adwservicesremove

服务器配置

新服务器数据存储在基本数据库文件中。此外,还维护增量数据库以及历史记录备份文件夹。可以控制各种服务器行为:

数据库重新加载

压缩数据库时

会话超时

备份间隔

这是一个屏幕截图,显示了一些可以监控的指标:

f92a4f65a5f590bd782f7590d7bbe224.png

AI实战-出租车价格数据集分析预测实例(含20个源代码+65.69 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共124.23 KB;数据大小:1个文件共65.69 KB。 使用到的模块: pandas seaborn xgboost matplotlib.pyplot sklearn.preprocessing.RobustScaler sklearn.metrics.mean_absolute_error sklearn.model_selection.GridSearchCV sklearn.model_selection.train_test_split numpy warnings joblib sklearn.set_config sklearn.impute.SimpleImputer sklearn.preprocessing.LabelEncoder sklearn.model_selection.cross_val_score sklearn.preprocessing.StandardScaler sklearn.metrics.r2_score sklearn.metrics.mean_squared_error sklearn.linear_model.LinearRegression sklearn.linear_model.Lasso sklearn.linear_model.Ridge sklearn.neighbors.KNeighborsRegressor sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor os sklearn.preprocessing.OneHotEncoder sklearn.compose.ColumnTransformer sklearn.pipeline.Pipeline sklearn.tree.DecisionTreeRegressor sklearn.svm.SVR sklearn.neural_network.MLPRegressor bokeh.io.output_notebook bokeh.io.show bokeh.plotting.figure bokeh.layouts.gridplot sklearn.preprocessing.PolynomialFeatures scipy.stats sklearn.metrics.mean_absolute_percentage_error sklearn.ensemble.ExtraTreesRegressor xgboost.XGBRegressor lightgbm.LGBMRegressor sklearn.impute.IterativeImputer statsmodels.stats.outliers_influence.variance_inflation_factor statsmodels.api sklearn.metrics.( plotly.express psynlig.plot_correlation_heatmap bokeh.plotting.show bokeh.plotting.output_notebook catboost.CatBoostRegressor sklearn.linear_model.ElasticNet missingno
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值