计算机科学计算答案 施吉林
1、上(下)三角矩阵的乘积、逆仍为上(下)三角矩阵
2、AB与BA迹相同tr(AB)=tr(BA),如果A或者B可逆,则AB与BA特征值相同 1)、tr(AB)
a
i 1k 1
nm
i,k
bk,i bk,iai,k tr(BA)
k 1i 1
mn
2)、由A 1( I AB)A I BA,或者B( I AB)B 1 I BA,两边取行列式并令其为令,即得到证明。
3、有上条性质可知:不存在满足AB-BA=I条件的方阵A、B 因为:tr(AB-BA)=tr(AB)-tr(BA)=0≠tr(I)=n
4、A和B都严格对角占优,但是A±B未必严格对角占优(例:B=-A或者B=A)
5、A和B可逆时
-1-1
1) 1≤cond(A),因为║I║=║AAI║≤║A║║A║║I║两边消去║I║即得
-1-1
2) 由1)得到:║A║≥1/║A║,║A║≥1/║A║
-1
3) 与2)对比有ρ(A)≤║A║,║A║≥1/ρ(A) 4) 如果║A║<1时
a
k 0
kA收敛,则 akAk
k 0
k
必发散,而║A║>1时
a
k 0
k
发散,Ak
则
a
k 0
k
A k未必收敛
6、 cond(AB)≤cond(A)cond(B),利用范数相容性立即可得
由此引出的不等式: -1-1-1-1
║A-B║≤║A║║B║║A-B║
-1-1-1-1-1-1-1-1
因为║A- B║=║B- A║=║B(I- BA)║=║B(A- B)A║
-1-1
≤║B║║A- B║║A║
-1-1
对应地有║A-B║≤║A║║B║║A- B║
7、 A非奇异,B奇异,则对于算子范数有1/Cond(A) ≤║A-B║/║A║
因为B奇异,则存在y≠0,使得By=0,从而有x=y/║y║≠0,║x║=1,并且Bx=0,
ABx=0,x-ABx=x,A(A-B)x=x,1=║x║=║A(A-B)x║≤║A(A-B)x║=
-1
-1
-1
-1
-1
x 1
=║A(A-B)║≤║A║║A-B║,两边除║A║即可得证。 由6)-7)组合,还可以得到更多的不等式。
8、正规阵同时又是三角阵,则它一定是对角阵
9、酉阵同时又是三角阵,则它一定是对角阵,并且对角元的模为1
10、对称矩阵的奇异值是特征值的绝对值
-1-1