计算机科学计算矩阵答案,计算机科学计算答案

本文主要讨论了矩阵的乘积、逆、迹、特征值等性质。指出上(下)三角矩阵乘积仍为上(下)三角,AB与BA的迹相同但特征值不一定相同。还证明了不存在满足AB-BA=I的方阵。此外,探讨了矩阵条件数、范数不等式及其应用,以及正规阵、酉阵的特性。特别地,对称矩阵的奇异值与特征值的关系也进行了阐述。
摘要由CSDN通过智能技术生成

计算机科学计算答案 施吉林

1、上(下)三角矩阵的乘积、逆仍为上(下)三角矩阵

2、AB与BA迹相同tr(AB)=tr(BA),如果A或者B可逆,则AB与BA特征值相同 1)、tr(AB)

a

i 1k 1

nm

i,k

bk,i bk,iai,k tr(BA)

k 1i 1

mn

2)、由A 1( I AB)A I BA,或者B( I AB)B 1 I BA,两边取行列式并令其为令,即得到证明。

3、有上条性质可知:不存在满足AB-BA=I条件的方阵A、B 因为:tr(AB-BA)=tr(AB)-tr(BA)=0≠tr(I)=n

4、A和B都严格对角占优,但是A±B未必严格对角占优(例:B=-A或者B=A)

5、A和B可逆时

-1-1

1) 1≤cond(A),因为║I║=║AAI║≤║A║║A║║I║两边消去║I║即得

-1-1

2) 由1)得到:║A║≥1/║A║,║A║≥1/║A║

-1

3) 与2)对比有ρ(A)≤║A║,║A║≥1/ρ(A) 4) 如果║A║<1时

a

k 0

kA收敛,则 akAk

k 0

k

必发散,而║A║>1时

a

k 0

k

发散,Ak

a

k 0

k

A k未必收敛

6、 cond(AB)≤cond(A)cond(B),利用范数相容性立即可得

由此引出的不等式: -1-1-1-1

║A-B║≤║A║║B║║A-B║

-1-1-1-1-1-1-1-1

因为║A- B║=║B- A║=║B(I- BA)║=║B(A- B)A║

-1-1

≤║B║║A- B║║A║

-1-1

对应地有║A-B║≤║A║║B║║A- B║

7、 A非奇异,B奇异,则对于算子范数有1/Cond(A) ≤║A-B║/║A║

因为B奇异,则存在y≠0,使得By=0,从而有x=y/║y║≠0,║x║=1,并且Bx=0,

ABx=0,x-ABx=x,A(A-B)x=x,1=║x║=║A(A-B)x║≤║A(A-B)x║=

-1

-1

-1

-1

-1

x 1

=║A(A-B)║≤║A║║A-B║,两边除║A║即可得证。 由6)-7)组合,还可以得到更多的不等式。

8、正规阵同时又是三角阵,则它一定是对角阵

9、酉阵同时又是三角阵,则它一定是对角阵,并且对角元的模为1

10、对称矩阵的奇异值是特征值的绝对值

-1-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值