F(x)=(i-1)/(n-1)+\frac{x-a_i}{(n-1)*(a_{i+1}-a_i)} if a_i<=x<=a_{i+1}, 1<=i
<=n-1
F(x)=1, if a_n<=x
生成算法:
1. 产生随机变量u符合(0,1)区间的均匀分布
2. 令m为(n-1)*u+1的整数部分
3. 返回x=a_m+((n-1)*u-m+1)*(a_{m+1}-a_m)
(6) 指数分布(Exponential Distribution)
生成随机变量x,符合参数为beta的指数分布EXP(beta)。其概率密度函数为:
f(x)=exp(-x/beta)/beta if 0<=x f(x)=0 x为其它
生成算法:
1. 产生随机变量u符合(0,1)区间的均匀分布
2. 返回x=-beta*ln(u)
(7)爱尔朗分布(Erlang Distribution)
生成随机变量x,符合参数为k, beta的爱尔朗分布ER(k,beta)。x为k个参数为beta的指
数分布的独立随机变量的和
生成算法:
1. 生成y_1,y_2,...,y_k符合指数分布EXP(beta)
2. 返回x=y_1+y_2+...+y_k
(8)伽玛分布(Gamma Distribution)
生成随机变量x,符合参数为alpha, beta的伽马分布Gm(alpha,beta)。其概率密度函数
为:
f(x)=\frac{x^{alpha-1}*exp(-x/beta)}{beta^alpha*Gamma(alpha)} if x>=0
f(x)=0 x为其它
其中,Gamma(.)为伽马积分函数。注意,Gm(1,beta)即为指数分布EXP(beta),当alpha
为整数时,可以按照如下算法生成x:
生成算法:
1. y=0
2. 生成u符合指数分布EXP(1)
3. y=y+u
4. alpha=alpha-1
5. 跳回第2步循环,直到alpha=1
6. 返回x=beta*y
(9)贝塔分布(Beta Distribution)
生成随机变量x,符合参数为alpha, beta的贝塔分布B(alpha,beta)。其概率密度函数为
f(x)=\frac{Gamma(alpha+beta)*x^{alpha-1}*(1-x)^{beta-1}}{Gamma(alpha)*Gamma(
beta)}, 0<=x<=1
其中,Gamma(.)为伽马积分函数。当alpha, beta为整数时,可以按照如下算法生成x
生成算法:
1. 产生y1符合伽马分布Gm(alpha,1)
2. 产生y2符合伽马分布Gm(beta,1)
3. 返回x=y1/(y1+y2)
(10)威布尔分布(Weibull Distribution)
生成随机变量x,符合参数为alpha, beta的威布尔分布W(alpha,beta)。其概率密度函数
为:(alpha, beta >0)
f(x)=alpha*x^{alpha-1}*exp(-(x/beta)^alpha)/(beta^alpha) if 0<=x f(x)=0 x为其它
生成算法:
1. 生成y符合指数分布EXP(1)
2. 返回x=beta*y^{1/alpha}
(11)几何分布(Geometric Distribution)
生成离散随机变量x,符合参数为p(0
F(x)=p*(1-p)^x, x=0,1,2,...
生成算法:
1. 产生随机变量u符合(0,1)区间的均匀分布
2. 返回x=ln(u)/ln(1-p)的整数部分
(12)负指数分布(Negative Binomial Distribution)
生成离散随机变量x,符合参数为k, p(0
p的几何分布随机变量之和
生成算法:
1. 生成y_1,y_2,...,y_k符合几何分布Ge(p)
2. 返回x=y_1+y_2+...+y_k
(13)Logistic 分布
生成随机变量x,符合参数为a, b的Logistic分布L(a,b)。其概率密度分布函数为:
f(x)=\frac{exp(-(x-a)/b)}{b*(1+exp(-(x-a)/b))^2}
生成算法:
1. 产生随机变量u符合(0,1)区间的均匀分布
2. 返回x=a-b*ln(1/u-1)
(14)正态分布(Normal Distribution)
生成随机变量x,符合参数为mu, sigma的正态分布N(mu,sigma^2)。其概率密度分布函数
为:
f(x)=\frac{exp(-(x-mu)^2/(2*sigma^2))}{sigma*sqrt(2*pi)}
生成算法:
1. 产生随机变量u1, u2符合(0,1)区间的均匀分布
2. y=sqrt(-2*ln(u1))*sin(2*pi*u2)
3. 返回x=mu+sigma*y
(15)卡方分布(Chi-Square Distribution)
令z_1,z_2,...,z_k符合标准正态分布N(0,1),则变量x=\sum_{i=1}^k{z_i^2}符合k个自
由度的卡方分布Chi_sq(k),其概率密度函数为:
f(x)=\frac{x^{k/2-1}*exp(-x/2)}{Gamma(k/2)*2^{k/2}}, x>0
生成算法:
1. 生成z_1,z_2,...,z_k符合标准正态分布N(0,1)
2. 返回x=z_1^2+z_2^2+...+z_k^2
(16)F分布(F Distribution)
令y1符合卡方分布Chi_sq(k1),y2符合卡方分布Chi_sq(k2),则x=(y1*k2)/(y2*k1)符合
参数为k1,k2的F分布F(k1,k2)
生成算法:
1. 生成y1符合卡方分布Chi_sq(k1)
2. 生成y2符合卡方分布Chi_sq(k2)
3. 返回x=(y1*k2)/(y2*k1)
(17)学生分布(Student's Distribution)
令z符合标准正态分布N(0,1),y符合卡方分布Chi_sq(k),则x=z/sqrt(y/k)为学生分布
S(k)
生成算法:
1. 生成z符合标准正态分布N(0,1)
2. 生成y符合卡方分布Chi_sq(k)
3. 返回x=z/sqrt(y/k)
(18)对数正态分布(Lognormal Distribution)
令z符合正态分布N(mu,sigma^2),则x=exp(z)符合对数正态分布LogN(mu,sigma^2),其
概率密度分布函数为:
f(x)=\frac{exp(-(ln(x)-mu)^2)/(2*sigma^2)}{sqrt(2*pi)*sigma*x}, 0<=x f(x)=0, x为其它
生成算法:
1. 生成y符合正态分布N(mu,sigma^2)
2. 返回x=exp(y)
(19)多元正态分布(Multinormal Distribution)
一个n维随机向量x=(x_1,x_2,...,x_n)若符合多元正态分布,则其概率密度分布函数为
f(x)=\frac{exp(-(x-mu)'*Sigma*(x-mu)/2)}{(2*pi)^{n/2}sqrt(det(Sigma))}
其中,x,mu均为向量,mu=(mu_1,mu_2,...,mu_n),Sigma为实正定对称矩阵,存在正定
的逆矩阵,det为行列式,'表示转置
生成算法:
1. 产生上三角矩阵C,其元素为c_{ij}, i,j=1,...,n,使Sigma=C*C'
2. 产生u_1,u_2,...,u_n符合标准正态分布N(0,1)
3. x_k=mu_k+\sum_{i=1}^k{c_{ki}*u_i} (k=1,2,...,n)
4. 返回x=(x_1,x_2,...,x_n)
(20)泊松分布(Poisson Distribution)
生成离散随机变量x,符合参数为lamda(lamda>0)的泊松分布P(lamda)。其累积概率分布
函数为:
F(x)=lamda^x*exp(-lamda)/x!, x=0,1,2,...
生成算法:
1. y=0, b=1
2. 产生随机变量u符合(0,1)区间的均匀分布
3. b=b*u
4. y=y+1
5. 重复步骤3-5,直到b6. 返回x=y-1
(21)均匀分布(Uniform Distribution)
生成随机变量x,符合参数为(a,b)的均匀分布Unit(a,b),其概率密度分布函数为:
f(x)=1/(b-a), a<=x<=b
f(x)=0, x为其它
一般采用生成伪随机序列的方法得到均匀分布的随机数,有两个基本方法:乘同余法和
混和同余法。
1. 乘同余法
基于如下的递推关系式产生正整数序列{x_i}
x_i=a*x_{i-1} (mod m), i=1,2,...
其中m=2^k,k>2,a=3 (mod 8)或 a=5 (mod 8),且a不能太小,初值x_0取正奇数,如1
。
再令u_i=x_i/m,则{u_i}为[0,1]分布的伪随机序列。
参数例子:a=179,m=2^35,x_0=11
2. 混和同余法
基于如下的递推关系式产生正整数序列{x_i}
x_{i+1}=a*x_i+c (mod m), i=1,2,...,n-1
其中a, c, m 都是非负整数,n使伪随机序列的长度。任何初始值x_1(被称为种子,且
0<=x_1<=m)通过上面的公式可以生成一组序列{x_1,x_2,...,x_n}。[0,1]之间的均匀分
布随机数可以通过下面的式子获得:
u_i=x_i/m, i=1,2,...,n
等价的,在区间[a,b]上均匀分布的随机数可以通过下式获得:
u_i=a+x_i*(b-a)/(m-1)
为了使结果具有理想统计特性,如分布均匀性,抽样随机性,试验独立性和前后一致性
等,参数x_1, a, c, m的选择需要特别注意,例如可以选择a=2^7+1,c=1,m=2^35。
本文概述了各种常见信息技术分布(如均匀、指数、贝塔等)的生成算法,包括随机数生成步骤和实例,如均匀分布的乘同余法和混和同余法,以及特定分布的数学表达和实现。涵盖了正态分布、卡方分布、F分布等,并强调了随机性和分布特性的重要性。
1631

被折叠的 条评论
为什么被折叠?



