c语言二进制补码取绝对值,补码的绝对值补码的运算.doc

本文详细介绍了计算机中补码的表示方法,如何计算负数的绝对值(真值),以及补码在加减乘运算中的应用。通过实例演示了补码加减法的计算步骤,并解释了补码代数表示背后的原理。重点展示了C语言中的补码存储和运算实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(3).补码的绝对值(称为真值)

【例4】-65的补码  若直接换成十进制,发现结果并不是-65,而是191。   事实上,在计算机内,如果是一个二进制数,其最左边的位是1,则我们可以判定它为负数,并且是用补码表示。   若要得到一个负二进制数的绝对值(称为真值),只要各位(包括符号位)取反,再加1,就得到真值。   如:二进制值-65的补码)   各位取反  加1+65的补码)

编辑本段代数加减运算

1、补码加法

[X+Y]补 = [X]补 + [Y]补   【例5】X=+0110011,Y=-0101001,求[X+Y]补   [X]补[Y]补  [X+Y]补 = [X]补 + [Y]补 =11010111  注:因为计算机中运算器的位长是固定的,上述运算中产生的最高位进位将丢掉,所以结果不是   100001010,而版权文档,请勿用做商业用途

2、补码减法

[X-Y]补 = [X]补 - [Y]补 = [X]补 + [-Y]补   其中[-Y]补称为负补,求负补的方法是:所有位(包括符号位)按位取反;然后整个数加1。   【例6】1+(-1) [十进制]   1的原转换成补码  -1的原转换成补码  1+(-1)=0  11111111 换成十进制为0   0=0所以运算正确。版权文档,请勿用做商业用途

3、补码乘法

设被乘数【X】补=X0.X1X2……Xn-1,乘数【Y】补=Y0.Y1Y2……Yn-1,   【X*Y】补=【X】补×【Y】补,即乘数(被乘数)相乘的补码等于补码的相乘。版权文档,请勿用做商业用途

编辑本段补码的代数解释

任何一个数都可以表示为-a=2^(n-1)-2^(n-1)-a;   这个假设a为正数,那么-a就是负数。而根据二进制转十进制数的方法,我们可以把a表示为:a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)   这里k0,k1,k2,k(n-2)是1或者0,而且这里设a的二进制位数为n位,即其模为2^(n-1),而2^(n-1)其二项展开是:1+2^0+2^1+2^2+……+2^(n-2),而式子:-a=2^(n-1)-2^(n-1)-a中,2^(n-1)-a代入a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)和2^(n-1)=1+2^0+2^1+2^2+……+2^(n-2)两式,2^(n-1)-a=(1-k(n-2))*2^(n-2)+(1-k(n-3))*2^(n-3)+……+(1-k2)*2^2+(1-k1)*2^1+(1-k0)*2^0+1,而这步转化正是取反再加1的规则的代数原理所在。因为这里k0,k1,k2,k3……不是0就是1,所以1-k0,1-k1,1-k2的运算就是二进制下的取反,而为什么要加1,追溯起来就是2^(n-1)的二项展开式最后还有一项1的缘故。而-a=2^(n-1)-2^(n-1)-a中,还有-2^(n-1)这项未解释,这项就是补码里首位的1,首位1在转化为十进制时要乘上2^(n-1),这正是n位二进制的模。   不能贴公式,所以看起来很麻烦,如果写成代数式子看起来是很方便的。   注:n位二进制,最高位为符号位,因此表示的数值范围-2^(n-1) ——2^(n-1) -1,所以模为2^(n-1)。上面提到的8位二进制模为2^8是因为最高位非符号位,表示的数值范围为0——2^8-1。   C语言中,就是用补码进行存储和运算的。版权文档,请勿用做商业用途

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值