1流明等于多少lux_光通量(流明)和照度(勒克司)定义及换算关系

光的相关单位及换算方法

光源在单位时间、向周围空间辐射并引起视觉的能量,称为光通量。用

Φ

表示,单位为流明

(Lm)

单位面积上接受的光通量称为照度,用

E

表示,单位勒克司

(Lx)

E=Φ/S

Φ

-光通量

(Lm)

S

-受照面积

(

)

换算关系

1

勒克斯

=1

流明的光通量均匀分布在

1

平方米面积上的照度

1

流明

=

发光强度为

1

坎德拉的点光源,在单位立体角内发射的光通量

1

勒克斯

=

发光强度为

1

坎德拉的点光源在半径为

1

米的球面上产生的光

照度

什么是坎德拉

(Candela

cd)?

在每平方米101325牛顿的标准大气压下,面积等于1/60平方厘米的绝

对“黑体”(即能够吸收全部外来光线而毫无反射的理想物体),在纯铂

(Pt)凝固温度(约2042K或1769℃)时,沿垂直方向的发光强度为1 坎德

拉(Candela,简写cd)。

什么是流明(Lumen,lm)?

发光强度为1坎德拉的点光源在单位立体角(1球面度)内发出的光通量为

1流明(Lumen,简写lm)。

什么是照度勒克斯(Lux, lx)?

光照度可用照度计直接测量。光照度的单位是勒克斯,是英文Lux的音

译,也可写为lx。被光均匀照射的物体,在1平方米面积上得到的光通

量是1流明时,它的照度是1勒克斯(Lux,简写lx)。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值